Determination of freeze-out conditions from fluctuation observables measured at RHIC

Marcus Bluhm

North Carolina State University

many thanks to:

P. Alba, W. Alberico, R. Bellwied, V. Mantovani Sarti, M. Nahrgang and C. Ratti

based on 1402.1238, 1403.4903 and 1408.4734

Hot Quarks 2014; Las Negras, Spain, September 21 - 28, 2014

Non-exhaustive introduction

heavy-ion collision

temporal evolution

- Chemical composition fixed at chemical freeze-out (FO) → location in QCD phase diagram?
- traditional approach: comparison of measured particle yields or ratios with thermal model calculations (statistical hadronization models (SHMs): hadronic degrees of freedom, various refinements exist!) minimal set of fitted parameters: (*T*, μ_B) for yield ratios; (*T*, μ_B, *V*) for yields

Non-exhaustive introduction

- Chemical composition fixed at chemical freeze-out (FO) → location in QCD phase diagram?
- traditional approach: comparison of measured particle yields or ratios with thermal model calculations (statistical hadronization models (SHMs): hadronic degrees of freedom, various refinements exist!) minimal set of fitted parameters: (*T*, μ_B) for yield ratios; (*T*, μ_B, *V*) for yields cf. e.g. J. Cleymans et al., PRC 73 (2006)

Complementary approach

Event-by-event fluctuations of conserved charges

- originally proposed to study the phase structure of QCD matter in heavy-ion collisions by varying the beam energy
- suitable observables because behavior of fluctuations sensitive to the state of the matter
- susceptibilities of conserved charges: B, Q, S, ...
 - local charge densities only varied through slow diffusion processes
 - show characteristic behavior at a phase transition, e.g. diverge at a critical point
- if the properties of the created matter freeze-out close to the phase transition, signatures are expected to be seen in the data
- experimentally, net-proton number as proxy for net-baryon number determined
- approach used in lattice QCD studies (limitations)
- use efficiency corrected data for net-proton number (net-p, 1309.5681) and net-electric charge (net-Q, 1402.1558) fluctuations measured in BES@RHIC by STAR to obtain the chemical FO conditions in a thermal model approach:
 - assumes that fluctuations originate from an equilibrated source

Event-by-event net-distributions

- number of measured particles varies from event to event \rightarrow fluctuations
- fluctuations in conserved charges only seen if restricted kinematic acceptance window considered
- determine statistical moments of distributions: mean M,
 - variance σ^2 ,
 - skewness S,
 - kurtosis κ, ...

Event-by-event net-distributions

Statistical moments and fluctuations

net-p, PRL 112 (2014) [1309.5681]

- Iluctuations in the net-number N of interest around its mean M = ⟨N⟩ are ∆N = N − ⟨N⟩
- ► cumulants of the distribution are: $C_1 = \langle N \rangle, C_2 = \langle (\Delta N)^2 \rangle, C_3 = \langle (\Delta N)^3 \rangle,$ $C_4 = \langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2, \dots$
- cumulants are related to the statistical moments as $C_1 = M$, $C_2 = \sigma^2$, $C_3 = S\sigma^3$, $C_4 = \kappa\sigma^4$, ...
- for an equilibrated system, cumulants related to generalized susceptibilities C_n = VT³χ_n, i.e. given by appropriate derivatives of ln Z w.r.t. chemical potentials
- ▶ in this case, cumulant ratios to leading order V-independent: $C_2/C_1 = \sigma^2/M$, $C_3/C_2 = S\sigma$, $C_4/C_2 = \kappa\sigma^2$, ...

Extraction of FO-parameters

- FO-parameters (T, μ_B) extracted from simultaneous comparison of experimental data for net-p and net-Q fluctuations with thermal model calculation (μ_Q, μ_S fixed by physical constraints)
- thermal model approach:
 - hadron resonance gas in grand canonical ensemble
 - influence of strong decays of resonances included
 - kinematic cuts in line with experimental analysis applied
 - influence of radial flow accounted for
 - impact of isospin randomization of $N(\overline{N})$ included
- qualitative behavior of net-Q fluctuations dominated by π and p; K give minor quantitative modifications

Isospin randomization

- net-proton number not conserved; final state effects may lead to significant modifications
- reactions of the form

$$p(n) + \pi^{0}(\pi^{+}) \rightarrow \Delta^{+} \rightarrow n(p) + \pi^{+}(\pi^{0})$$
$$p(n) + \pi^{-}(\pi^{0}) \rightarrow \Delta^{0} \rightarrow n(p) + \pi^{0}(\pi^{-})$$

modify primordial protons into undetectable neutrons

 isospin of nucleons randomized after 2 cycles; depends on pion density and on duration of hadronic phase compared to time for resonance regeneration plus decay

 \Rightarrow binomial distribution of $N_{p(\overline{p})}$ among $N_{N(\overline{N})}$

- allows reconstruction of *thermal* net-*B* fluctuations (*difficult to measure*) from measured N_p- and N_p-distributions (M. Kitazawa, M. Asakawa, PRC 85 and 86 (2012))
- allows determination of net-p fluctuations from net-B fluctuations calculated in a thermal model, and extraction of FO-conditions from comparison with experimental data
- \rightarrow inclusion of this effect was essential to find common FO-conditions for net-*p* and net-*Q* fluctuations

Comparison of FO-conditions

- our FO-temperatures are significantly below previous SHM fits
- agreement with recent lattice QCD analysis (WB Collaboration, 1403.4576)
- ▶ particle ratios at $\sqrt{s} = 200$ GeV well described except for (multi-)strange hyperon to pion ratios; overall quality of description comparable: χ^2 /NDF $\approx 5.6/8$ vs. 5.1/8
- considered fluctuation observables sensitive to light quark sector

Comparison of FO-conditions

- our FO-temperatures are significantly below previous SHM fits
- agreement with recent lattice QCD analysis (WB Collaboration, 1403.4576)
- ▶ particle ratios at $\sqrt{s} = 200$ GeV well described except for (multi-)strange hyperon to pion ratios; overall quality of description comparable: χ^2 /NDF $\approx 5.6/8$ vs. 5.1/8
- considered fluctuation observables sensitive to light quark sector

Higher-order cumulant ratios

net-Q

 \rightarrow within errors net-Q fluctuations described (errors not limited by statistics)

ightarrow toward lower \sqrt{s} visible deviations in higher-order net-proton cumulant ratios

Impact of other fluctuation sources on net-p

source	effect	comments	negligible for
			high \sqrt{s} in our
			σ^2/M -analysis?
exact baryon	reduction of	effect stronger for	
number conservation	cumulant ratios	HO cumulant ratios	\checkmark
		and lower \sqrt{s}	
volume	at $\mu_B = 0$	strongly suppressed	
fluctuations	enhancement of	in central collisions	\checkmark
	cumulant ratios		
excluded volume	reduction of	effect stronger for	
corrections	cumulant ratios	HO cumulant ratios	\checkmark
		and lower \sqrt{s}	
critical	non-monotonic	2^{nd} order $PT o C_2$	non-monotony
fluctuations	behavior	at $\mu_B = 0 ightarrow C_6$	not seen in
			σ^2/M -data

A. Bzdak et al., PRC 87 (2013); V. Skokov et al., PRC 88 (2013); M.I. Gorenstein et al., PRC 76 (2007); J. Fu, PLB 722 (2013); V. Skokov et al., PLB 708 (2012); K. Redlich, CEJP 10 (2012); ...

Conclusions

- extraction of FO-conditions from fluctuation observables measured at RHIC:
 - common for net-Q and net-p (as proxy for net-B)
 - comparable with recent lattice QCD results
 - significantly lower FO-temperatures compared to SHM fits
- comparison with measured particle ratios suggests light quark flavor sensitivity of considered fluctuations
- strangeness seems to behave differently \rightarrow fluctuation data needed!