Measurement of W-boson production in p-Pb collisions at $\int s_{NN} = 5.02$ TeV with ALICE

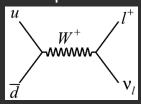
Jianhui Zhu for the ALICE Collaboration

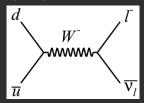
Hot Quarks, September 22 - 27, 2014, Las Negras, Spain

Subatech, CNRS/IN2P3, Nantes, France École des Mines de Nantes, Nantes, France Institute of Particle Physics, CCNU, Wuhan, China

Outline

- Physics motivation
- ALICE layout and data sample
- Analysis strategy:
 - measure muons from W decays at forward and backward rapidities
 - W signal extraction
 - Acc. x Eff. Correction
 - normalization
- * Results:
 - cross section vs. rapidity
 - \square yield/ $\langle N_{coll} \rangle$ vs. multiplicity
- Conclusion

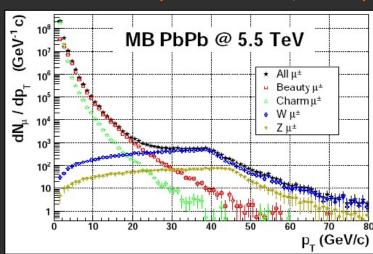

Physics motivation


Why ?

- □ Electroweak (EW) bosons are produced in initial hard partonic scattering processes
- ☐ In p-p collisions:
 - \checkmark W boson production mechanism (e.g. via q- \bar{q} annihilation) makes it sensitive to parton distribution functions (PDFs)
- ☐ In p-Pb collisions:
 - ✓ investigate the cold nuclear matter effects
 - ✓ modification of PDFs in nuclei
- ☐ In Pb-Pb collisions:
 - ✓ produced before QGP is formed
 - colorless probes which are supposed not to interact with QGP
- Luminosity and detector alignment cross-checks

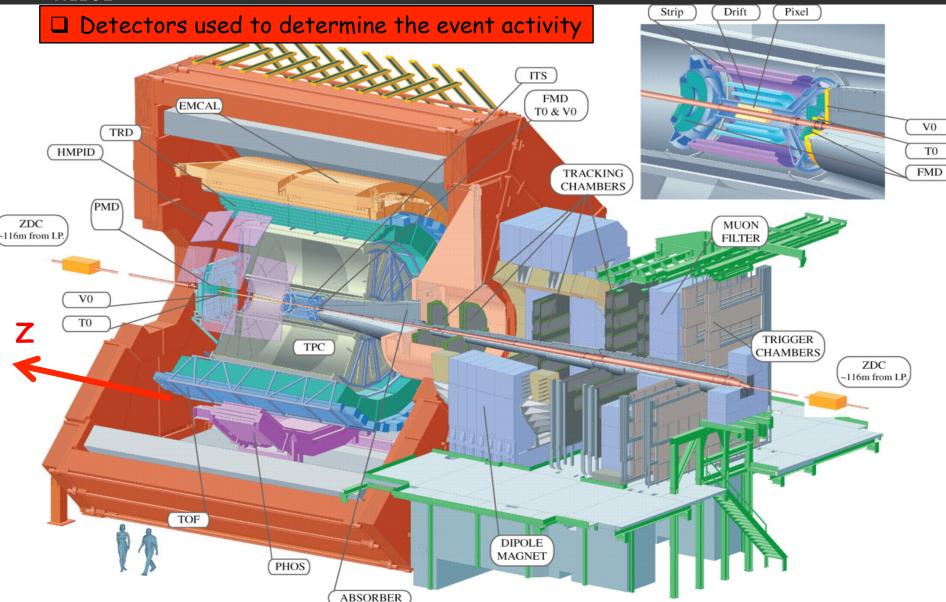
How ?

Dominant production processes (LO)

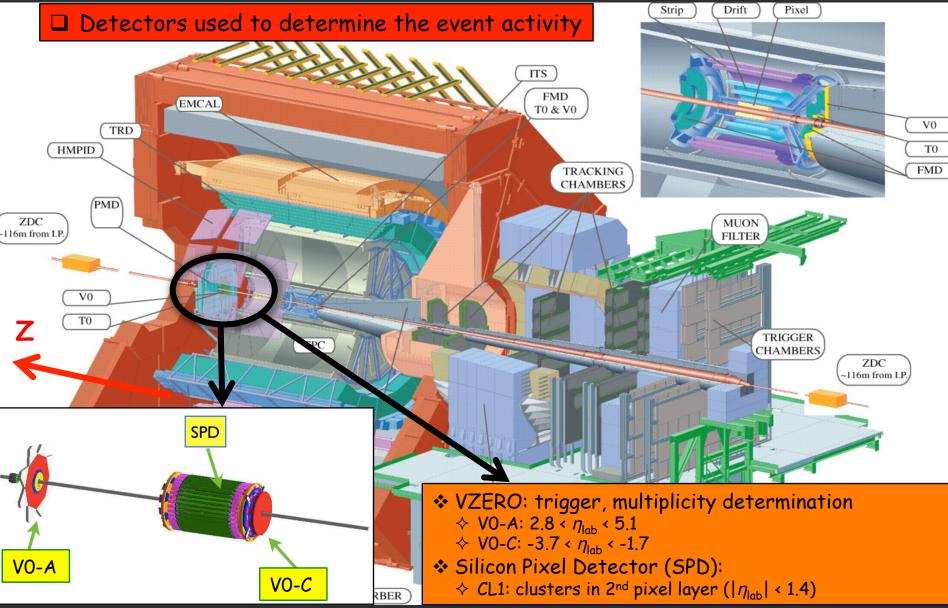

- Detected through their muonic decay:
 - $W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$
- μ^{\pm} \leftarrow W^{\pm} production is maximum at ~ 40 GeV/c and dominates the high p_{T} range

[Z. Conesa del Valle et al., ALICE-INT-2006-021 & Eur. Phys. J. C49 (2007) 149]

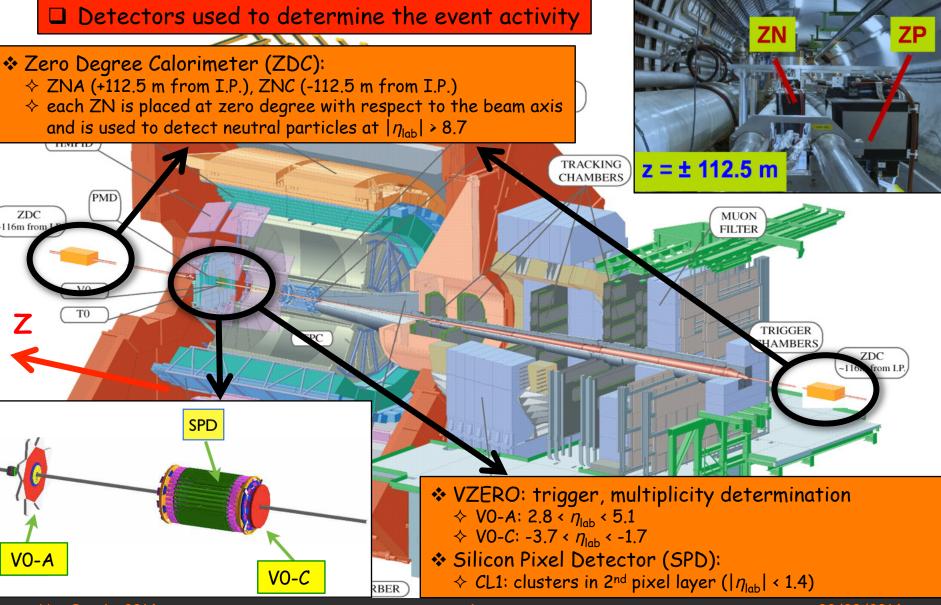
Where ?


□ In the ALICE Muon Spectrometer, covering a rapidity range complementary to those of ATLAS and CMS

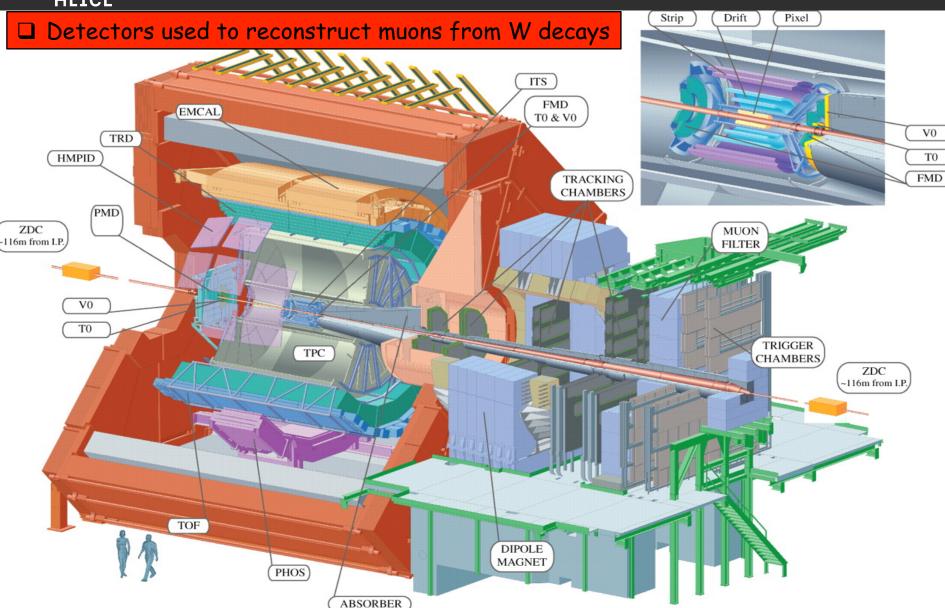
statistics: 1 month (L = 5.10^{26} cm⁻² s⁻¹, t = 10^6 s)



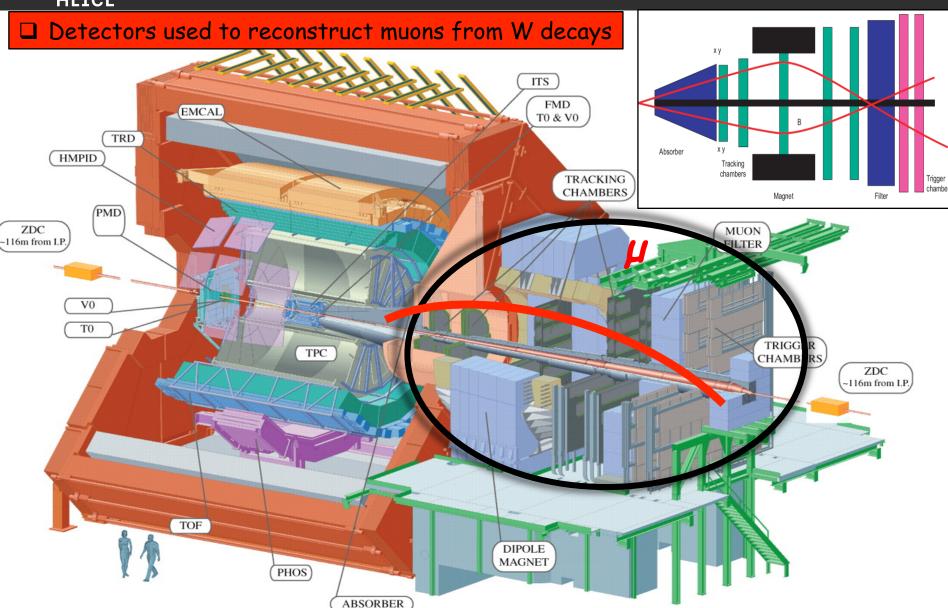
ALICE detector layout (I)



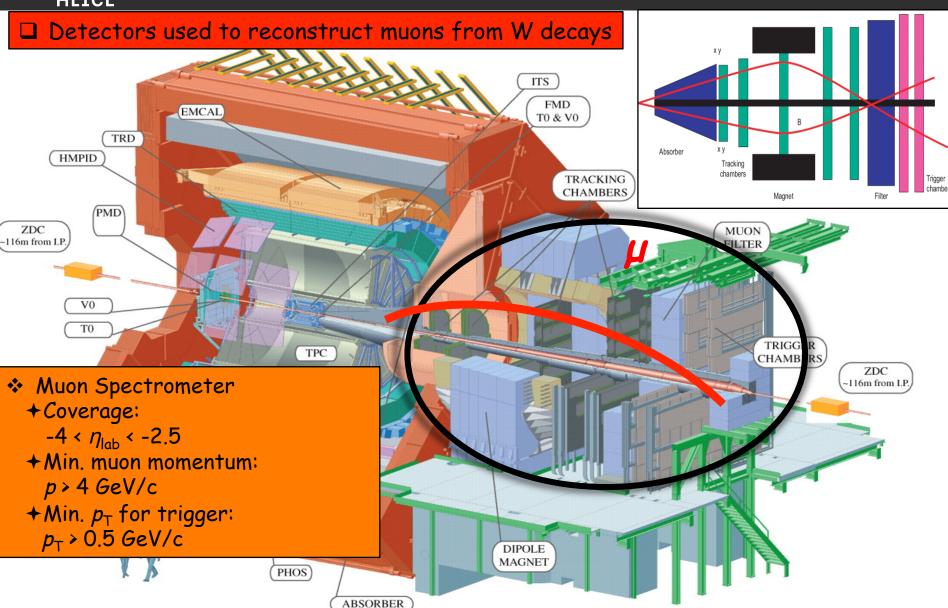
ALICE detector layout (I)



ALICE detector layout (I)

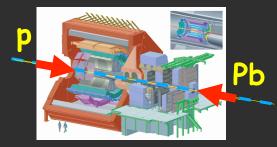


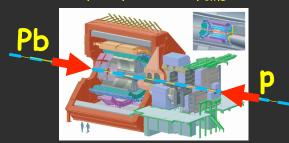
ALICE detector layout (II)



ALICE detector layout (II)

ALICE detector layout (II)




Data sample

p-Pb collisions :

- Beam energy: $\int s_{NN} = 5.02 \text{ TeV}$
 - Energy asymmetry of the LHC beams ($E_p = 4 \text{ TeV}$, $E_{Pb} = 1.58 \text{ A} \cdot \text{TeV}$)
 - \rightarrow rapidity shift $\Delta y = 0.465$ in the proton direction
- Beam configurations:
 - Data collected with two beam configurations: p-Pb and Pb-p in the range 2.5 < y_{lab} < 4
 - \rightarrow forward rapidity (2.03 < y_{CMS} < 3.53)

backward rapidity (-4.46 < y_{CMS} < -2.96)

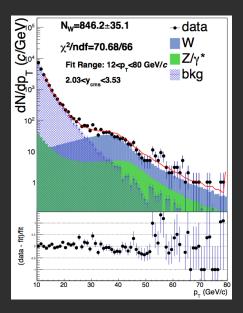
- Trigger: high p_T muon triggered events = MB events (coincidence of VOA & VOC) with a muon of $p_T \sim 4.2$ GeV/c in the spectrometer
- Statistics:

	Integrated luminosity		
forward	4.9 × 10³ ub ⁻¹		
backward	5.8 × 10³ ub ⁻¹		

Muon track selection :

- acceptance and geometrical cuts
- muon trigger matching: reject punch-through hadrons
- pxDCA cut: correlation between momentum and distance of closest approach (DCA) to the interaction vertex to remove beam-gas collisions and fake tracks

Analysis strategy


- $ightharpoonup W^{\pm}$ decay muons are the main contributors in single muon momentum distribution at high p_{T} (p_{T} > 30 GeV/c)
- ightharpoonup Heavy-flavor decay muons are the dominant background at low p_{T} (8 < p_{T} < 40 GeV/c)
- ♦ For p_T > 50 GeV/c, Z^0/γ^* is the main source of background
- ❖ Extract W± signal from a fit of the transverse momentum distribution of single muons with

$$f(p_T) = N_{bkg} \cdot f_{bkg}(p_T) + N_{\mu \leftarrow W} \cdot f_{\mu \leftarrow W}(p_T) + N_{\mu \leftarrow Z/\gamma^*} \cdot f_{\mu \leftarrow Z/\gamma^*}(p_T)$$

- f_{bkg}(p_T): phenomenological functions or FONLL-based MC template
- $f_{u \leftarrow W}(p_T)$, $f_{u \leftarrow Z/y^*}(p_T)$: Monte-Carlo templates (POWHEG)
- N_{bkg}, N_{u←W}: free parameters
- $N_{\mu \leftarrow Z/v}$: fixed to $N_{\mu \leftarrow W}$

- Normalize the corrected yield ($\mu^{\pm} \leftarrow W^{\pm}$) to the Minimum Bias cross-section
- Compare results with theory

W^{\pm} and Z^{0}/γ^{*} MC templates

Simulation configuration:

- \square W[±] and Z⁰/ γ ^{*} generated with POWHEG in p-p & p-n collisions at 5.02 TeV
- \square W[±] and Z⁰/ γ * forced to decay into muonic channels

Generators:

■ POWHEG:

[JHEP 0807(2008)060]

- is interfaced with PYTHIA6.4 to apply showering, CTEQ6m PDF and no shadowing
- PYTHIA6.4 : (is used only for systematics, including effects of shadowing)
 [JHEP 05(2006)026]
 - shadowing: p or n considered in a Pb nucleus, parameterized with EPS09 [JHEP 0904(2009)065]
 - PDF set : CTEQ61

Combine p-p & p-n to obtain p-Pb:

 \triangle A = 208, Z = 82

$$\frac{1}{N_{pPb}} \cdot \frac{dN_{pPb}}{dp_T} = \frac{Z}{A} \cdot \frac{1}{N_{pp}} \cdot \frac{dN_{pp}}{dp_T} + \frac{A - Z}{A} \cdot \frac{1}{N_{pn}} \cdot \frac{dN_{pn}}{dp_T}$$

HF background: phenomenological functions

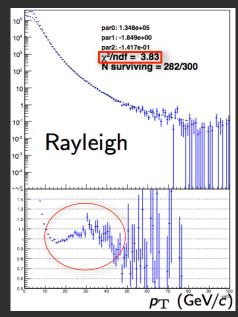
- The background mainly consists of muons from heavy-flavor (b+c) decays
- lacktriangle Small shadowing effects expected at high $p_{ au}$: use FONLL $p_{ au}$ shapes in the generation of D and B mesons
- Phenomenological functions used by CMS, ATLAS and LHCb collaboration for similar measurements at the LHC

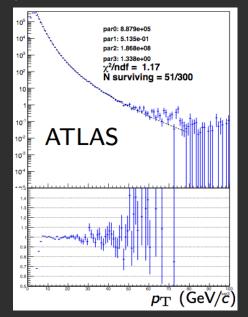
Rayleigh:

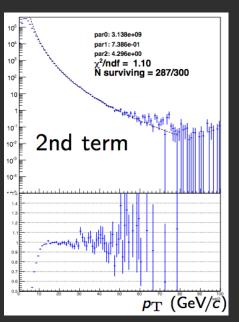
$$f(p_T) = C \cdot p_T \cdot \exp\left(-\frac{p_T^2}{2(A+B \cdot p_T)^2}\right)$$

[Phys. Lett. B 715 (2012) 66]

ATLAS:

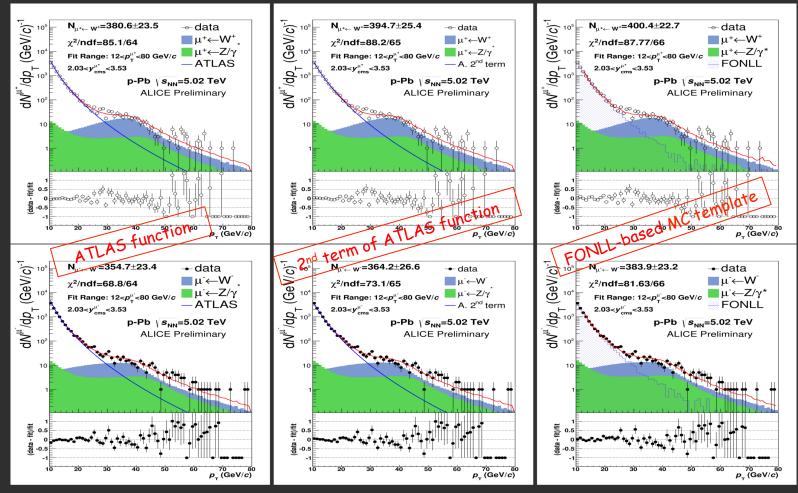

$$f(p_T) = A \cdot e^{-B \cdot p_T} + C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^{2.5}}$$


[ATLAS-CONF-2011-078]


ATLAS 2nd term:

$$f(p_T) = C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^E}$$

Test on FONLL-based MC template: reject Rayleigh



Example of W signal extraction (forward)

- The yield of $\mu^{\pm} \leftarrow W^{\pm}$ is defined as the integral W template for $p_{T} > 10 \text{ GeV/c}$
- Fit range : 12 < p_T < 80 GeV/c</p>

Example of fit in forward rapidity:

Hot Quarks 2014 14 22/09/2014

Systematic on signal extraction

- Signal extraction: several fits performed on the muon p_{T} distribution (trials) by varying the fit configuration
 - heavy-flavor background description \rightarrow change fit functions and p_{T} range of fit
 - fraction of muons from Z^0/γ^* decays \rightarrow use difference between POWHEG and PYTHIA
 - alignment effects \rightarrow vary the detector positions in simulations within uncertainties on alignment
- The yield of μ[±] ← W[±] is defined as the weighted average of the trials:
 - the results of (3 background descriptions) x (1 MC templates for signal, POWHEG) x (different p_T ranges) x (2 values of $N_{\mu \leftarrow Z/\gamma^*}/N_{\mu \leftarrow W}$) x (2 residual alignment files) are merged together to obtain the final value

$$\left\langle N_{W}\right\rangle = \frac{\sum_{i=1}^{n} w_{i} N_{\mu \leftarrow W, i}}{\sum_{i=1}^{n} w_{i}}$$

$$w_{i} = \frac{1}{\left(\frac{\sigma_{\mu \leftarrow W}}{\sqrt{N_{\mu \leftarrow W}}}\right)^{2}}$$

$$w_i = \frac{1}{\left(\frac{\sigma_{\mu \leftarrow W}}{\sqrt{N_{\mu \leftarrow W}}}\right)^2}$$

The statistical error is given by propagating the error on each trial:

$$\sigma_{\langle N\mu \leftarrow W \rangle}^{stat.} = \frac{\sqrt{\sum_{i=1}^{n} \left(w_{i} \sigma_{\mu \leftarrow W,i} \right)^{2}}}{\sum_{i=1}^{n} w_{i}} \cdot \sqrt{n}$$

Assuming that the results from different trials come from a uniform distribution, one can finally estimate the systematic uncertainty as:

$$\sigma_{\langle N\mu \leftarrow W \rangle}^{syst.} = \frac{Max(N_{\mu \leftarrow W,i}) - Min(N_{\mu \leftarrow W,i})}{\sqrt{12}}$$

Shadowing effects: use PYTHIA (with EPSO9) for W templates

- In order to get the real yield of W, the results should be corrected by Acc. x Eff.
- Acc. x Eff. is determined from the same simulations used to obtain the µ[±]←W[±] templates

	forv	vard	backward		
	μ⁺	μ-	μ⁺	μ-	
Acc. x Eff.	0.888	0.887	0.775	0.760	

Alignment effect:

Systematics due to imperfect knowledge of the detector positions estimated by varying the alignment in the simulations and found to be < 1%</p>

Tracking/trigger efficiency:

- Systematic uncertainties for muon tracks:
 - Tracking: 2% Trigger: 1% (detector efficiency only at high $p_{ extsf{T}}$) Matching: 0.5%
- Propagation to the number of muons from W decays
- A conservative uncertainty of 2.5% is considered for all multiplicity bins

Normalization

- \bigstar MSL: muon single low p_T trigger $(p_T > \sim 0.5 \text{ GeV/c})$, MSH: muon single high p_T trigger $(p_T > \sim 4.2 \text{ GeV/c})$
- MSH events must be normalized to equivalent minimum bias to obtain the cross-section
- Normalization factors estimated with two methods:
 - Offline method which uses trigger inputs:

$$F_{norm}^{MSH} = \frac{N_{MB} \times F_{pile-up}}{N_{(MB\&\&0\,MSL)}} \times \frac{N_{MSL}}{N_{(MSL\&\&0\,MSH)}}$$

where $F_{pile-up} = \mu/(1-e^{-\mu})$ and μ is the mean value of Poisson distribution which describes the probability to have N collisions

Trigger scalers which use Level 0 (L0b) trigger counters:

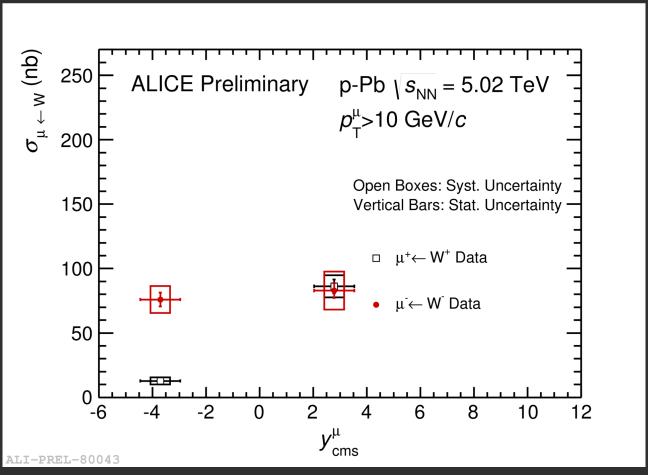
$$F_{norm}^{MSH} = \frac{L0b_{MB} \times purity_{MB} \times F_{pile-up}}{L0b_{MSH} \times PS_{MSH}}$$

 PS_{MSH} fraction of accepted high p_T triggered events which pass the physics selection

- The difference of the methods is used as systematic uncertainty (1%)
- MB cross sections:
 - **p**-Pb (forward) : 2.09 ± 0.07 b
 - p-Pb (backward) : 2.12 ± 0.06 b

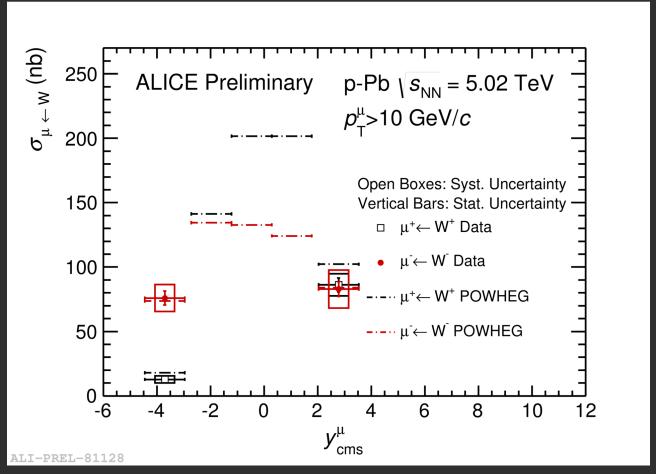
$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{Acc. \times Eff.} \times \frac{\sigma_{MB}}{N_{MSH} \times F_{norm}}$$

Summary of systematic uncertainties


- Systematic on the generator is based on: the NLO generator POWHEG and PYTHIA6.4 which is used to take into account systematics on nPDFs
- Other possible sources:
 - ✓ input PDFs
 - \checkmark The ratio of Z^0/γ^*
 - ✓ All of above are < 1%
- The summary of systematics considered is shown below:

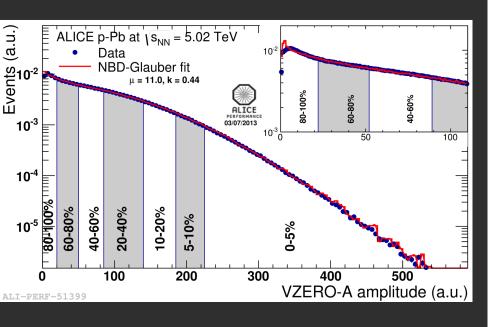
Signal extraction (includes alignment, fit stability/shape, etc.)	from ~ 6% to ~ 24%
Acc.xEff. - track./trig. Efficiencies - alignment	2.5% 1%
Normalization to MB - F _{norm} - σ_{MB} Pile-up	1% 3.2% (forward) 3% (backward) from 0 to 7.5%
Normalization to <n<sub>coll></n<sub>	from 8% to 21% depending on bin

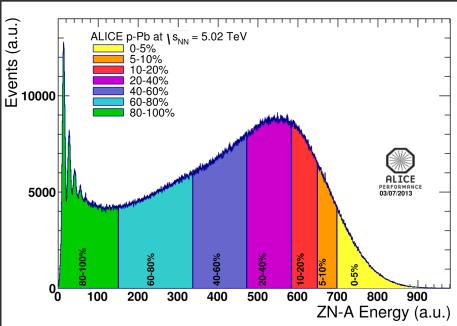
Results: cross section vs. rapidity


Cross section of muons from W decays with 2.03 $< y_{CMS} < 3.53$ (forward) and -4.46 $< y_{CMS} < -2.96$ (backward), $p_T^{\mu} > 10$ GeV/c in p-Pb collisions

Results: cross section vs. rapidity

- Cross section of muons from W decays with 2.03 $< y_{CMS} < 3.53$ (forward) and -4.46 $< y_{CMS} < -2.96$ (backward), $p_T^{\mu} > 10$ GeV/c in p-Pb collisions
- Measurement is consistent with POWHEG cross-section within 1.5σ
- POWHEG here does not include nuclear PDF effects

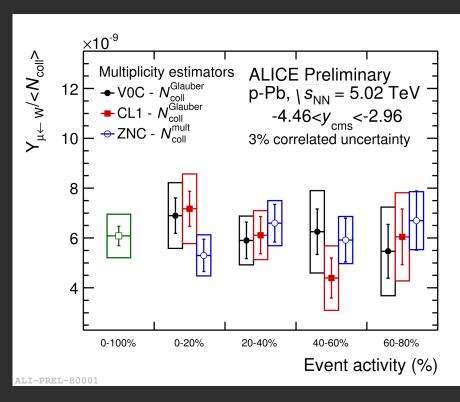




Determination of $\langle N_{coll} \rangle$

- Average number of collisions were estimated:
 - > for VOA, VOC and CL1: Glauber + Negative Binomial Distribution fits to amplitude
 - > for ZNA and ZNC: Hybrid method
 - slice events in ZN energy (Pb-going side)
 - <N_{coll}> in ZN energy class is obtained by scaling the minumum bias value

$$\left\langle N_{coll} \right\rangle_{i} = < N_{coll} >_{MB} \left(\frac{\left\langle dN/d\eta \right\rangle_{i}}{\left\langle dN/d\eta \right\rangle_{MB}} \right)_{-1 < \eta < 0} - 1$$


ALI-PERF-51392

Results: Yield/<N_{coll} > vs. multiplicity

- In order to increase statistics, µ⁺ ← W⁺ and µ⁻ ← W⁻ were added
- In case <N_{coll}> estimation was not biased, Y/<N_{coll}> was not expected to depend on event activity

forward backward

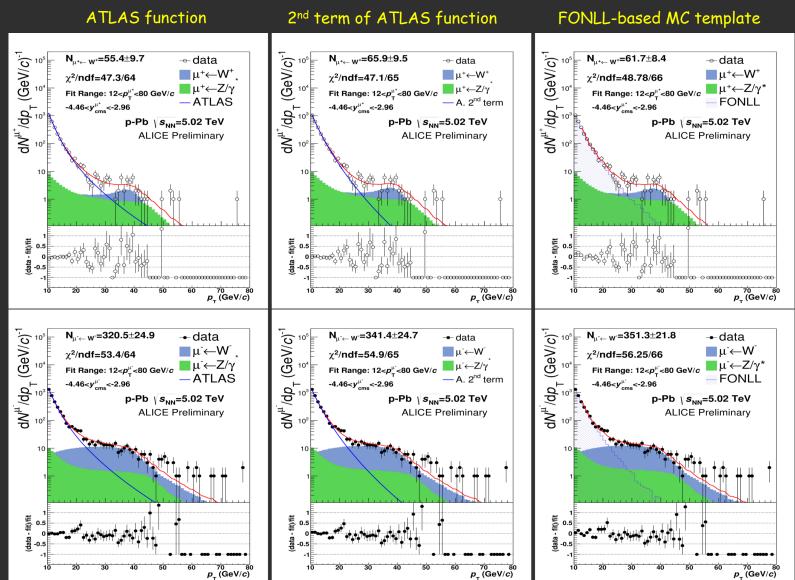
Behavior of different multiplicity estimators compatible within uncertainties

Conclusion

The production of muons from W decays was measured in p-Pb collisions at $\int s_{NN} = 5.02$ TeV in the ranges 2.03 $\langle y^{\mu}_{CMS} \rangle \langle 3.53 \rangle$ and $\langle 4.46 \rangle \langle y^{\mu}_{CMS} \rangle \langle -2.96 \rangle \langle p_{T}^{\mu} \rangle \langle 10 \rangle \langle p_{T}^{\mu} \rangle \langle 10 \rangle$

Results:

- cross section of muons with p_{T}^{μ} > 10 GeV/c as a function of y_{CMS}
- yields/ $\langle N_{coll} \rangle$ using different multiplicity estimators to determine $\langle N_{coll} \rangle$: yield in different event activity bins found to scale with $\langle N_{coll} \rangle$ within (large) uncertainties


- Cross section is compared with POWHEG:
 - agreement within 1 (1.5) sigma for μ (μ +)
 - no nuclear modification of the PDFs in POWHEG

Backup

Example of combined fit (backward)

Yileds of muons from W decays normalized to binary number of collisions

	V0 <i>A</i>		CL1		VO <i>C</i>		Hybrid ZNA	
Multiplicity	<n<sub>coll></n<sub>	syst.	<n<sub>coll≻</n<sub>	syst.	<n<sub>coll></n<sub>	syst.	<n<sub>coll></n<sub>	syst.
0-20%	12.8	11%	13.4	11%	12.85	11%	11.5	9.3%
20-40%	9.36	10%	9.51	10%	9.39	10%	9.57	8.1%
40-60%	6.42	9%	6.29	9%	6.40	9%	7.01	9.9%
60-80%	3.81	21%	3.52	21%	3.74	21%	4.33	12.7%
0-100%	<n<sub>coll>: 6.8835</n<sub>							

- ❖ In order to increase the statistics, the results for μ^+ ← W⁺ and μ^- ← W⁻ are summed together
- The systematic uncertainties on signal extraction are considered as uncorrelated and summed in quadrature
- The uncertainties on the normalization factor and tracking & trigger uncertainties and efficiency are fully correlated among μ⁺ and μ⁻ and also among the different multiplicity bins
- The uncertainties on Acc.xEff. are uncorrelated for μ^+ and μ^- , but correlated with multiplicity
- The uncertainties on pile-up and $\langle N_{coll} \rangle$ are correlated among μ^+ and μ^- , but uncorrelated in multiplicity