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Motivation
Applicability of relativistic viscous hydrodynamics

Kovtun, Son, and Starinets, Phys.Rev.Lett. 94, 111601 (2005)

relativistic hydrodynamics plays an important role in the SM of HIC

strongly-coupled N = 4 SYM theory impose lower bound of the η/S
⇒ dissipative corrections important

relativistic viscous hydrodynamics describes experimental data very well

recently the properties of the QGP are studied more precisely (i.e. shear viscosity, ...)
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Motivation
Issues

thermodynamic gradients⇒ transport phenomena⇒ transport coefficients

form of kinetic coefficients entering relaxation-type equations of motion for the
shear-stress tensor πµν and bulk viscous pressure Π must be derived within a certain
framework

various methods available: Israel-Stewart, Grad’s 14-moment approximation,
Chapman-Enskog method
⇒ large uncertainties concerning second-order transport coefficients
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Motivation
Issues

research devoted mainly to the extraction of the η/S, a systematic and self-consistent
study of the effect of bulk viscosity has not been performed so far

at large T the coupling is weak, theory is nearly conformal, the bulk viscosity is
expected to be small
⇒ however QCD is non-conformal theory
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Motivation
Issues

canonical treatment based on an expansion of the general distribution function
around local equilibrium state (corrections give rise to dissipative currents)

f (x ,p) = fiso

(
pµuµ
T (x)

)
︸        ︷︷        ︸

LO

+ δf (x ,p)
1
1︸      ︷︷      ︸

NLO

⇒ early thermalization required

large anisotropy at early times predicted by microscopic models (CGC, AdS/CFT, ...)

studied systems are subject to rapid longitudinal expansion

⇒ large viscous corrections to the ideal energy-momentum tensor
⇒ canonical expansion breaks down
⇒may cause unphysical results
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Motivation
Quantifying efficacy of various approximation schemes

goal:
assess efficacy of various dissipative hydrodynamic approaches by comparing their
predictions with exact solutions of the underlying kinetic theory equations

it is possible using relaxation time approximation for collisional kernel and simple
boost-invariant transversely homogeneous symmetry of the system
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Exact solution of the RTA Boltzmann equation for a massive gas
General setup

Boltzmann equation in the relaxation time approximation

pµ∂µf (x ,p) = C[f (x ,p)] C[f ] = pµuµ
f eq
− f

τeq

background distribution (Boltzmann statistics)

f eq =
gs

(2π)3
exp

(
−

pµuµ
T

)

for transversely homogeneous boost-invariant system

w = tp‖ − zE v = tE − zp‖ (Bialas,Czyz)

∂f
∂τ

=
f eq
− f

τeq

f eq(τ,w ,p⊥) =
gs

(2π)3
exp

−
√

w2 + (m2 + p2
⊥

)τ2

Tτ
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Exact solution of the RTA Boltzmann equation for a massive gas
Formal solution

formal solution

f (τ,w ,p⊥) = D(τ, τ0)f0(w ,p⊥) +

τ∫
τ0

dτ′

τeq(τ′)
D(τ, τ′) f eq(τ′,w ,p⊥)

D(τ2, τ1) = exp

−
τ2∫
τ1

dτ′′

τeq(τ′′)


initial condition (Romatschke-Strickland form)

f0(w ,p⊥) =
gs

(2π)3
exp

−
√

(1 + ξ0)w2 + (m2 + p2
⊥

)τ2
0

Λ0 τ0


ξ0 = ξ(τ0) - initial value of the anisotropy parameter
Λ0 = Λ(τ0) - initial transverse-momentum scale
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Exact solution of the RTA Boltzmann equation for a massive gas
Thermodynamic variables

particle density, energy density, transverse and longitudinal pressure

n(τ) = g0

∫
dP

v
τ

f (τ,w ,p⊥)

E(τ) = g0

∫
dP

v2

τ2
f (τ,w ,p⊥)

PT (τ) = g0

∫
dP

p2
T

2
f (τ,w ,p⊥)

PL(τ) = g0

∫
dP

w2

τ2
f (τ,w ,p⊥)
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Exact solution of the RTA Boltzmann equation for a massive gas
Landau matching

determination of effective temperature (Landau matching)

uµTµν = uµTµνeq

E(τ) = E
eq(τ)

= g0

∫
dP

v2

τ2
f eq(τ,w ,p⊥)

=
g0Tm2

π2

[
3TK2

(m
T

)
+ mK1

(m
T

)]

Tµν = (E+PT )uµuν − PT gµν + (PL − PT )zµzν

Tµνeq = (Eeq +Peq)uµuν − Peqgµν

TµνLRF = diag(E,PT ,PT ,PL)

Tµνeq;LRF = diag(Eeq,Peq,Peq,Peq)
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Exact solution of the RTA Boltzmann equation for a massive gas
Numerical method

W. Florkowski, R. Ryblewski, M. Strickland, Phys. Rev. C88, 024903 (2013)

W. Florkowski, E. Maksymiuk, R. Ryblewski, M. Strickland, Phys. Rev. C89, 054908 (2014)

Tm2
[
3TK2

(m
T

)
+ mK1

(m
T

)]
=

gs

4

D(τ, τ0)Λ4
0H̃2

 τ0

τ
√

1 + ξ0

,
m
Λ0


+

∫ τ

τ0

dτ′

τeq(τ′)
D(τ, τ′)T ′4H̃2

(
τ′

τ
,

m
T ′

)]
numerical (iterative) method
1) use a trial function T ′ = T (τ′) on the RHS of the dynamic equation
2) the LHS of the dynamic equation determines the new T = T (τ)
3) use the new T (τ) as the trial one
4) repeat steps 1-3 until the stable T (τ) is found
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Second-order viscous hydrodynamics

G. Denicol, S. Jeon, and C. Gale, arXiv:1403.0962
A. Jaiswal, R. Ryblewski, M. Strickland, arXiv:1407:4767

energy and momentum continuity equation (zero net charge, no charge diffusion)

∂µTµνvisc = 0 Tµνvisc = Euµuν −∆µν(Peq + Π) + πµν

relaxation-type evolution equations for bulk viscous pressure and shear stress tensor in
relaxation-time approximation

Π̇ +
Π

τΠ
= −βΠθ − δΠΠΠθ+ λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν + 2π〈µγ ω

ν〉γ
− τπππ

〈µ
γ σ

ν〉γ
− δπππ

µνθ+ λπΠΠσµν

relaxation time approximation imposes τΠ = τπ = τeq

form of transport coefficients may depend on the method employed (Grad’s
14-moment approximation, Chapman-Enskog-like method, Israel-Stewart ...)
some kinetic coefficients (τππ, λΠπ and λπΠ) are absent in the traditional Israel-Stewart
viscous hydrodynamics

W. Israel, J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979)

Muronga, Phys.Rev.C 69, 034903 (2004)

Heinz, Song, Chaudhuri, Phys.Rev.C 73, 034904 (2006)

Jaiswal, Bhalerao, Pal, Phys.Rev.C 87, 021901 (2013)

...
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Results
Importance of kinetic coefficients in the second-order viscous hydrodynamics

T
µ
µLRF = T

µ
µ visc;LRF
↓

Π = 1
3

[
P
‖

(τ) + 2P⊥(τ) − 3Peq(τ)
]

G. Denicol, H. Niemi, E. Molnar and D. H. Rischke, Phys. Rev. D 85, 114047 (2012)
G. Denicol, S. Jeon, C. Gale, arXiv:1403:0962

G. Denicol, W. Florkowski, R. Ryblewski, M. Strickland, arXiv:1407:4767
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τππ is extremely important for correct description of shear stress corrections (20%
discrepancy, warning for IS users!)
shear–bulk couplings (λΠπ and λπΠ) are crucial for correct description of the bulk
viscous correction
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Results
Kinetic coefficients in 14-moment approximation and Chapman-Enskog method

A. Jaiswal, Phys. Rev. C 87, 051901 (2013)
A. Jaiswal, R. Ryblewski, M. Strickland, arXiv:1407:4767
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Chapman-Enskog method and 14-moment approximation provide slightly different
form of second-order kinetic coefficients
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Results
Kinetic coefficients in 14-moment approximation and Chapman-Enskog method

A. Jaiswal, R. Ryblewski, M. Strickland, arXiv:1407:4767
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kinetic coefficients obtained within Chapman-Enskog method provides even better
description of bulk pressure evolution than 14-moment approximation
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Anisotropic hydrodynamics

L. Tinti, W. Florkowski, Phys. Rev. C89 034907 (2014)

M. Nopoush, R. Ryblewski, M.Strickland, Phys. Rev. C90 (2014) 014908

anisotropic hydrodynamics→ one expands around an anisotropic background,
momentum-space anisotropies are built into the LO

f (x ,p) = fiso


√

pµΞµνpν

Λ(x)

︸                ︷︷                ︸
LO

+ δf̃ (x ,p)
1
1︸      ︷︷      ︸

NLO

spheroidal ansatz for Ξµν give (LRF) pµΞµνpν = p2
x + p2

y + (1 + ξ)p2
z (R-S form)

anisotropy tensor decomposition

Ξµνuµuν + ξµν −∆µνΦ

uµξµν = 0 uµ∆µν = 0 ξ
µ
µ = 0 ∆

µ
µ = 3

ξµν = diag(0, ξ) ξ ≡ (ξx , ξy , ξz )
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Anisotropic hydrodynamics

L. Tinti, W. Florkowski, Phys. Rev. C89 034907 (2014)

M. Nopoush, R. Ryblewski, M.Strickland, Phys. Rev. C90 (2014) 014908

equations of motion for ξz , Φ, λ, T for (0+1)d case are obtained by taking moments of
the Boltzmann equation in the relaxation time approximation

pµ∂µf = pµ
uµ
τeq

(f eq
− f ) → ∂µ1

∫
dP pµ1 ...pµn+1 f = uµ1

∫
dP pµ1 ...pµn

1
τeq

(f eq
− f )

0th moment (1 eq.) ∂µNµ =
uµ
τeq

(Nµ
eq − Nµ)

1st moment (2 eq.) uν∂µTµν = uν
uµ
τeq

(Tµνeq − Tµν)

uµTµνeq = uµTµν

2nd moment (1 eq.) X i
µX i

ν∂λΘλµν = X i
µX i

ν
uλ
τeq

(
Θ
λµν
eq −Θλµν

)
i = 0, 1, 2, 3...

anisotropic hydrodynamics has various appealing features (no negative pressures,
reproduced free-streaming limit, kinetic coefficients included implicitly ...)
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Results
Comparison with anisotropic hydrodynamics

M. Nopoush, R. Ryblewski, M. Strickland, Phys. Rev. C90 (2014) 014908
G. Denicol, W. Florkowski, R. Ryblewski, M. Strickland, arXiv:1407:4767
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anisotropic hydrodynamics better captures the PL/PT behavior but does not
describe bulk correction as good as viscous hydrodynamics

kinetic coefficients implicitly included
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Conclusions

we applied the iterative Chapman-Enskog method to derive second-order viscous
hydrodynamic equations and the associated transport coefficients for a massive gas
in relaxation time approximation

we used exact solution of RTA Boltzmann kinetic equation for testing various
approximation schemes

we found that:
commonly used Israel-Stewart 2nd order viscous hydrodynamics equations do not describe
early-time evolution of bulk viscous pressure and shear stress correctly (shear–bulk couplings
and τππ are crucial!)

Chapman-Enskog method provides equations which give the best overall agreement with
exact solutions

anisotropic hydrodynamics provides the best description of PL/PT evolution

NOTE:
there are new exact solutions of the RTA Boltzmann equation now available for
conformal systems employing so called Gubser symmetry

G. Denicol, U. Heinz, M. Martinez, J. Noronha, M. Strickland, arXiv:1408.5646
G. Denicol, U. Heinz, M. Martinez, J. Noronha, M. Strickland, arXiv:1408.7048
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Thank you for your attention!
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Backup slides
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Results
Relative importance of bulk kinetic coefficients in Chapman-Enskog method

A. Jaiswal, R. Ryblewski, M. Strickland, arXiv:1407:4767
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the evolution of bulk viscous pressure is dominated by its coupling to the shear
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