## **Energy loss in jet suppression – what effects matter?**

#### Bojana Blagojevic Institute of Physics Belgrade, University of Belgrade

### **Jet suppression**

- Light and heavy flavor suppressions are considered to be excellent probes of QCD matter
- RHIC and LHC suppression data for different probes are available
- Comparison of theoretical predictions with experiments tests our understanding of QCD matter.

#### **Computational scheme**



- **1)** Initial momentum distributions
- 2) Energy loss calculations
- **3)** Fragmentation functions
- **4)** Decay functions

## **Computational formalism**

- Light flavor production (Z.B. Kang, I. Vitev, H. Xing, PLB 718:482 (2012))
- Heavy flavor production (M. Cacciari et al., JHEP 1210, 137 (2012))
- Dynamical energy loss in a finite size QCD medium (M. Djordjevic. PRC 80:064909 (2009))
- Multi-gluon fluctuations

   (M. Gyulassy, P. Levai, I. Vitev, PLB 538:282 (2002))
- Path-length fluctuations (A. Dainese, EPJ C33:495 (2004))
- Fragmentation for light and heavy flavor
   (D. de Florian, R. Sassot, M. Stratmann, PRD 75:114010 (2007), M. Cacciari, P. Nason, JHEP 0309: 006 (2003))
- Decay of heavy meson into e<sup>-</sup> and J/ψ (M. Cacciari et al., JHEP 1210, 137 (2012))

## **Dynamical energy loss formalism**

- Jet energy loss calculated in a finite size dynamical QCD medium (M.Djordjevic, PRC 80:064909 (2009), M. Djordjevic and U. Heinz, PRL 101:022302 (2008).
- Abolishes approximation of static scatterers.
- Collisional + radiative energy losses
- Finite magnetic mass effects (M. Djordjevic and M. Djordjevic, PLB 709:229 (2012))
- Running coupling (M. Djordjevic and M. Djordjevic, PLB 734:286, 2014)

#### **Comparison with LHC data (central collisions)**

M. Djordjevic and M. Djordjevic, PLB 734:286 (2014)



Very good agreement for diverse probes!

#### Non-central collisions at LHC (charged hadrons)



#### Very good agreement for all centrality ranges!

## Non-central collisions at LHC (D mesons)



Very good agreement for 0-10% and 30-50% centrality ranges!

## 10-30% and 50-80% centrality ranges are awaiting for upcoming measurements.

M.D.Djordjevic, M. Djordjevic and B.Blagojevic, PLB737,298 (2014)

## **Comparison with RHIC data** (central collisions)



#### Very good agreement!

M.Djordjevic and M. Djordjevic, arXiv:1407.3670

B.Blagojevic

#### Non-central collisions at RHIC (neutral pions)



#### Very good agreement!

M.D.Djordjevic, M. Djordjevic and B.Blagojevic, PLB 737,298 (2014)

#### **Comparison summary**

- Observed good agreement for
   > Both RHIC and LHC
   > Various observables
   > Different centralities
- All predictions generated
   By the same formalism
   With the same numerical procedure
   No free parameters in model testing

## **Energy loss ingredients**

- Radiative contribution
- Collisional contribution
- Dynamical scatterers
- Finite magnetic mass
- > Running coupling



**B.** Blagojevic and M. Djordjevic, to be submitted (2014)

#### Charm quark as a probe for energy loss testing (RHIC)



## Our approach: systematically include different ingredients

- Static radiative vs. collisional
- > Include dynamical scattering centers
- Include finite magnetic mass
- > Include running coupling

How suppression predictions are affected?

## Static radiative vs. collisional energy loss



**B.** Blagojevic and M. Djordjevic, to be submitted (2014)

#### **Radiative energy loss - static vs. dynamical**

**Dynamical energy loss according to:** M. Djordjevic. PRC 80:064909 (2009))



**B.** Blagojevic and M. Djordjevic, to be submitted (2014)

# Collisional vs. radiative energy losses in dynamical approximation



**B.** Blagojevic and M. Djordjevic, to be submitted (2014)

#### Finite magnetic mass effects on R<sub>AA</sub> (radiative+collisional energy losses in dynamical medium)

#### **Magnetic mass included according to:**

M.Djordjevic and M. Djordjevic, Phys. Lett.B709:229 (2012)



**B. Blagojevic and M. Djordjevic, to be submitted (2014)** 

## **Running coupling**

**Running coupling included according to:** M. Djordjevic and M. Djordjevic, PLB 734:286, 2014.



**B.** Blagojevic and M. Djordjevic, to be submitted (2014)

## Conclusion

Finite size dynamical energy loss leads to a robust agreement with suppression data, for different probes, experiments and centrality regions.

Different ingredients in the energy loss: what is the relative importance of these components?



Good agreement is a cumulative effect of smaller improvements!

## Back up

#### **Radiative energy loss**

Radiative energy loss comes from the processes which have more outgoing than incoming particles:



#### **Collisional energy loss**

Collisional energy loss comes from the processes which have the same number of incoming and outgoing particles:



### **Running coupling**



#### **Radiative energy loss**

M. D. and M. Djordjevic, arXiv:1307.4098



#### **Parton suppression predictions**



#### **Finite magnetic mass effects**

$$v(\mathbf{q}) = v_L(\mathbf{q}) - v_T(\mathbf{q})$$

$$v_{L,T}(\mathbf{q}) = \frac{1}{\mathbf{q}^2 + Re\Pi_{L,T}(\infty)} - \frac{1}{\mathbf{q}^2 + Re\Pi_{L,T}(0)}$$

$$Re\Pi_T(\infty) = Re\Pi_L(\infty) \equiv \mu_{pl}^2$$

$$\mu_E^2 \equiv Re\Pi_L(x=0)$$

$$\mu_M^2 \equiv Re\Pi_T(x=0)$$

#### **Collisional energy loss**

• We approximate the full fluctuation spectrum in collisional energy loss probability by a Gaussian with a mean determined by the average energy loss and the variance determined by:

$$\sigma_{coll}^2 = 2T < \Delta E^{coll}(p_{\perp}, L) >$$

• HTL gluon propagator

$$D^{\mu\nu}(\omega, \mathbf{q}) = -P^{\mu\nu}\Delta_T(\omega, \mathbf{q}) - Q^{\mu\nu}\Delta_L(\omega, \mathbf{q})$$
$$\Delta_T = \frac{1}{\omega^2 - \mathbf{q}^2 - \frac{\mu^2}{2} - \frac{(\omega^2 - \mathbf{q}^2)\mu^2}{2\mathbf{q}^2}(1 + \frac{\omega}{2q}\ln|\frac{\omega - q}{\omega + q}|)}$$
$$\Delta_L = \frac{1}{\mathbf{q}^2 + \mu^2(1 + \frac{\omega}{2q}\ln|\frac{\omega - q}{\omega + q}|)}$$

#### HTL gluon propagator

$$iD^{\mu\nu}(l) = \frac{P^{\mu\nu}(l)}{l^2 - \Pi_T(l)} + \frac{Q^{\mu\nu}(l)}{l^2 - \Pi_L(l)}$$

$$\Pi_T(l) = \mu^2 \left[ \frac{y^2}{2} + \frac{y(1-y^2)}{4} \ln\left(\frac{y+1}{y-1}\right) \right], \qquad \Pi_L(l) = \mu^2 \left[ 1 - y^2 - \frac{y(1-y^2)}{2} \ln\left(\frac{y+1}{y-1}\right) \right]$$
$$y \equiv \frac{l_0}{|\mathbf{l}|}$$

#### **Numerical procedure**

- Light flavor production (Z.B. Kang, I. Vitev, H. Xing, PLB 718:482 (2012))
- Heavy flavor production (M. Cacciari et al., JHEP 1210, 137 (2012))
- Multi-gluon fluctuations (M. Gyulassy, P. Levai, I. Vitev, PLB 538:282 (2002))
- Path-length fluctuations (A. Dainese, EPJ C33:495 (2004))
- DSS and KKP fragmentation for light flavor (D. de Florian, R. Sassot, M. Stratmann, PRD 75:114010 (2007), B. A. Kniehl, G. Kramer, B. Potter, NPB 582:514 (2000))
- BCFY and KLP fragmentation for heavy flavor (M. Cacciari, P. Nason, JHEP 0309: 006 (2003))
- Decay of heavy meson into e<sup>-</sup> and J/ψ (M. Cacciari et al., JHEP 1210, 137 (2012))

# Static vs. dynamical radiative energy loss (theory)

Can static approximation still be used for radiative energy loss calculations?





### **Nuclear modification factor R**<sub>AA</sub>

- 1. p-p collisions  $\rightarrow$  QCD vacuum
- 2. A-A collisions  $\rightarrow$  hot/dense QCD matter (QGP)

 $R_{AA} \sim \frac{\text{Yield}(A A)}{\text{Yield}(p p)} \sim \frac{\text{"hot/dense QCD medium"}}{\text{"QCD vacuum"}}$ 

• Nuclear modification factor:

$$R_{AA}(p_T, y; b) = \frac{d^2 N_{AA}/dy dp_T}{\langle T_{AA}(b) \rangle \times d^2 \sigma_{pp}/dy dp_T}$$

$$\frac{E_f d^3 \sigma}{dp_f^3} = \frac{E_i d^3 \sigma(Q)}{dp_i^3} \otimes P(E_i \to E_f)$$
  
 
$$\otimes D(Q \to H_Q) \otimes f(H_Q \to e, J/\psi).$$