Electric Conductivity and Heat Conductivity of the Quark-Gluon Plasma Hot Quarks 2014

Moritz Greif, in collaboration with: Ioannis Bouras, Armando Puglisi, Christian Wesp, Zhe Xu, Florian Senzel, Gabriel Denicol and Carsten Greiner

mainly based on: arXiv 1408 7049

26.09.2014

Overview

- Electric Conductivity
- 2 Numerical methods
- 3 Results
- 4 Heat Conductivity of the QGP

Overview

What is the Electric Conductivity $\sigma_{\rm el}$?

What is the Electric Conductivity $\sigma_{\rm el}$?

Basic definition $\vec{j} = \sigma_{\rm el} \vec{E}$ • \vec{E} electric field (unit GeV/fm) • q electric charge (e.g. 1/3e) • \vec{j} electric current density (unit

 $[\text{GeV/fm}^2], e = \sqrt{4\pi/137})$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): $\mathrm{d}p = q E au$
- \bullet Average momentum: $\langle p \rangle = q E \tau$
- Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): $\mathrm{d}p = q E au$
- \bullet Average momentum: $\langle p \rangle = q E \tau$
- Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

Drude" Electric conductivity:
$$\sigma_{\mathsf{el}} = rac{nq^2 au}{m}$$

н

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): $\mathrm{d}p = q E au$
- \bullet Average momentum: $\langle p \rangle = q E \tau$
- Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): $\mathrm{d}p = q E au$
- Average momentum: $\langle p
 angle = q E au$
- Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): dp = qE au
- Average momentum: $\langle p
 angle = q E au$
- Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

"Drude" Electric conductivity: $\sigma_{\mathsf{el}} = rac{nq^2 au}{m}$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): dp = qE au
- Average momentum: $\langle p
 angle = q {m E} au$

• Electric current density : $j = nq \langle p \rangle /m = \frac{nq^2 \tau}{m} E$

Well known "Drude"-formula for $\sigma_{\rm el}$

 $\tau = \frac{1}{n\sigma}$

"F. Reif/Wikipedia derivation":

- ullet Uniform, constant, small electric field $ec{E}$
- Charged particles, charge q, density n
- Time between collisions : au
- After collision: $\langle p \rangle = 0$ **!RESISTANCE!**
- Momentum kicks between collisions (every au seconds): dp = qE au
- Average momentum: $\langle p
 angle = q {m E} au$
- Electric current density : $j = nq \left /m = \frac{nq^2 \tau}{m} E$

"Drude" Electric conductivity: $\sigma_{\mathsf{el}} = rac{nq^2 au}{m}$

Why is electric conductivity interesting?

Hirono et al., arXiv:1211.1114

"..the charge-dependent directed flow of hadrons is sensitive to the charge dipole in the medium and is useful in estimating the electric conductivity of the QGP."

A. Rybicki and A. Szczurek, arXiv:1405.6860v1

"...the spectator-induced electromagnetic interaction on the directed flow of charged pions.[...]"

"...a baseline for studies of other phenomena, like those related to the electric conductivity of the quark-gluon plasma."

Other effects: diffusion of magnetic fields, soft dilepton production rate an Main

Analytic expressions for the Electric Conductivity $\sigma_{\rm el}$...

Relaxation time parametrisation: $au \sim ({\sf Density} \cdot {\sf Cross} \; {\sf Section})^{-1}$

non-relativistic Drude

$$\sigma_{\sf el} = rac{nq^2 au}{m}$$
 (with charged particle density n , charge q , mass m)

Analytic expressions for the Electric Conductivity $\sigma_{\rm el}$...

Relaxation time parametrisation: $au \sim ({\sf Density} \cdot {\sf Cross} \; {\sf Section})^{-1}$

non-relativistic Drude

$$\sigma_{\sf el} = rac{nq^2 au}{m}$$
 (with charged particle density n , charge q , mass m)

Ultrarelativistic cases:

Linearized collision term, 0 + 1 energy expansion

 $\sigma_{\rm el} \cdot T \sigma_{\rm tot\ cross\ section} = rac{2}{13} q_u^2 + rac{4}{13} q_d^2 \ ({\rm u,d,s,\ physical\ deg.})$

M.G., G.Denicol, Details later in this talk...

Analytic expressions for the Electric Conductivity $\sigma_{\rm el}$...

Relaxation time parametrisation: $au \sim ({\sf Density} \cdot {\sf Cross} \; {\sf Section})^{-1}$

non-relativistic Drude

$$\sigma_{\mathsf{el}} = rac{nq^2 au}{m}$$
 (with charged particle density n , charge q , mass m)

Ultrarelativistic cases:

Linearized collision term, 0 + 1 energy expansion

 $\sigma_{\mathsf{el}} \cdot T\sigma_{\mathsf{tot. cross section}} = \frac{2}{13}q_u^2 + \frac{4}{13}q_d^2 (\mathsf{u},\mathsf{d},\mathsf{s},\mathsf{physical deg.})$ M.G., G. Denicol. Details later in this talk...

AMY, for pQCD cross sections

$$\label{eq:taulor} \sigma_{\rm el} = \frac{1}{g^4} \left(\frac{({\rm sum ~of~charges})^2}{{\rm some~number}} \right) T$$

P.Arnold, G.D. Moore, L.G. Yaffe. JHEP2000 + own changes

How to get the Electric Conductivity of a QGP numerically?

Partonic cascade BAMPS

$$p^{\mu}\partial_{\mu}f(x,p) = \mathcal{C}_{22}[f] + \mathcal{C}_{23}[f]$$

Stochastic Collision Probability, Cross Sections σ_{22}, σ_{23}

$$P_{22} = v_{rel} \frac{\sigma_{22}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$$

$$P_{23} = v_{rel} \frac{\sigma_{23}}{N_{test}} \frac{\Delta t}{\Delta^3 x}, \ P_{32} = \dots$$

• $\sim 1000~{\rm cells}~\Delta^3 x$ with $\sim 20~{\rm particles/cell}$

- ~ 30000 timesteps Δt
- massless particles, several species

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901 UNIVERSITA

Moritz Greif (AG Greiner)

GOETI

1.) Electric Conductivity via the Green-Kubo formula

- Thermal/chemical equilibrium
- Extract classical current-current-correlator $\langle J_x(0) J_x(t) \rangle$
- Use in Kubo-Formula

Kubo-Formula

$$\sigma_{el} = \frac{1}{TV} \int_{0}^{\infty} \mathrm{d}t \underbrace{\langle J_x(\mathbf{0}) J_x(\mathbf{t}) \rangle}_{\mathsf{Current-Current-Correllator}}$$

with electric current in x-direction $J_x(t)$, time t

FRANKFURT AM MAIN

Green-Kubo formula, What is electric current?

$$N_{\boldsymbol{k}}^{\nu} = \int \frac{d^3p}{p^0} p^{\nu} f_{\boldsymbol{k}}(x,p)$$

Moritz Greif (AG Greiner)

26.09.2014 12

Green-Kubo formula, What is electric current?

Non-Relativistically: j = nqv

In general: Net-Charge Diffusion Current:

$$j_{\mu} = (g_{\mu\nu} - u_{\mu}u_{\nu}) \sum_{k=1}^{\text{Species}} q_k N_k^{\nu}$$

with particle current density (for species k):

$$N_{\boldsymbol{k}}^{\nu} = \int \frac{d^3p}{p^0} p^{\nu} f_{\boldsymbol{k}}(x,p)$$

Green-Kubo formula, What is electric current?

Non-Relativistically: j = nqv

In general: Net-Charge Diffusion Current:

$$j_{\mu} = \left(g_{\mu\nu} - u_{\mu}u_{\nu}\right)\sum_{k=1}^{\text{Species}} q_{k}N_{k}^{\nu}$$

with particle current density (for species k):

$$N_{\boldsymbol{k}}^{\nu} = \int \frac{d^3p}{p^0} p^{\nu} f_{\boldsymbol{k}}(x,p)$$

• 4-velocity u^{μ} , p^{μ} 4-Momentum, $f_{k}(x,p)$ distribution

- Discrete version: sum up particle momenta...
- Alternative def: $j^{\mu}_{\bm{k}}=q_{\bm{k}}N^{\mu}_{\bm{k}}-(n_{\bm{k}}/n_{\rm tot})q_{\bm{k}}N^{\mu}_{\rm tot}$

Green-Kubo formula, What is electric current?

Non-Relativistically: j = nqv

In general: Net-Charge Diffusion Current:

$$j_{\mu} = (g_{\mu\nu} - u_{\mu}u_{\nu}) \sum_{k=1}^{\text{Species}} q_k N_k^{\nu}$$

with particle current density (for species k):

$$N_{\boldsymbol{k}}^{\nu} = \int \frac{d^3p}{p^0} p^{\nu} f_{\boldsymbol{k}}(x,p)$$

• 4-velocity u^{μ} , p^{μ} 4-Momentum, $f_{\pmb{k}}(x,p)$ distribution

• Discrete version: sum up particle momenta...

• Alternative def:
$$j^{\mu}_{m k}=q_{m k}N^{\mu}_{m k}-(n_{m k}/n_{
m tot})q_{m k}N^{\mu}_{
m tot}$$

Take home message

Diffusion current of species: current with respect to flow of all species

Green-Kubo formula... How to get correlations?

Green-Kubo relation: $\sigma_{\rm el} \sim \int dt C(t)$ $J^x(0)J^x(t)$ -Correlator: $C(t) = \frac{1}{s_{\max}} \sum_{s=0}^{s_{\max}} J^x(s)J^x(s+t)$

2.) Electric Conductivity via the **external force method**: *"Simple picture"*

• Additional¹ momentum for each particle i, (charge q_i , timestep Δt), using small electric field E^x ,

$$p_i^x \longrightarrow p_i^x + (\Delta t E^x q_i)$$

Wait until static, non-zero current has established

ullet Read off electric conductivity $\sigma_{ extsf{el}}$

$$\sigma_{\mathsf{el}} = \frac{J^x}{E^x}$$

¹First done by Cassing et al.,arXiv:1302.0906

2.) Electric Conductivity via the **external force method**: *"Simple picture"*

• Additional¹ momentum for each particle *i*, (charge q_i , timestep Δt), using small electric field E^x ,

$$p_i^x \longrightarrow p_i^x + (\Delta t E^x q_i)$$

Wait until static, non-zero current has established
Read off electric conductivity σ_{el}

$$\sigma_{\rm el} = \frac{J^x}{E^x}$$

GOETHE UNIVERSITÄT

¹Eiset done by Coscing at all ar Yim 1202 0006 Moritz Greif (AG Greiner)

26.09.2014 14

Method 1) and 2) also good for shear viscosity and heat conductivity!

Shear viscosity η/s :

- Green-Kubo formalism: Christian Wesp et al., PRC 84, 2011
- Velocity gradient method: Felix Reining et al., PRE 85, 2012

Heat conductivity κ_{heat} :

- Temperature gradient method: MG et al., PRE 87, 2013
- Green-Kubo: this work, see later

Some results to cross-check the method

First some 2011/2012 results for shear viscosity Wesp et al, Reining et al., Plumari et al.,...

Previous results for η , **Constant isotropic cross** section

Previous results for η , **pQCD cross section**

FRANKFURT AM MAIN

Some results to cross-check the method

Now for the electric conductivity ...

Vary the electric field...okaj...

Compare Green-Kubo with Efield method...okaj...

Compare BAMPS-results obtained by methods 1) and 2):

About the notion of *relaxation time* τ

Simplified collision term in Boltzmann equation $\frac{p^{\mu}u_{\mu}}{\tau}(f_{eq}-f)$

3) Current-Current time-correlation, exponential slope au

Used for Green-Kubo analysis; current in thermal equilibrated system: $\langle j_x j_x \rangle = A e^{-t/\tau}$

All three are the same quantity! What is the value of τ ?

Constant Isotropic Cross Sections

Compare BAMPS to analytics?

Relativistic, analytic calculations for σ_{el} start all with:

$$p^{\mu}\partial_{\mu}f(\vec{k},x) + qF^{\mu\nu}k_{\nu}\partial/\partial k^{\mu}f(\vec{k},x) = \text{Collision term}$$
(1)

Collision term:

- Linearized, L[f], so far NOTHING ON THE MARKET
 - Motivation: $f = f_{equilibrium} + \delta f$, soon results!
- Anderson-Witting, $\tau^{-1}(f f_{eq})$
 - Drude-formula:

$$\sigma_{\rm el} = \frac{1}{3T} \left(\frac{\sum\limits_{\rm species \ k} q_k^2 n_k}{\sum\limits_{\rm species \ k} n_k} \right) \gamma$$

 Chapman-Enskog calculation from Cercignani and Kremer, in gluon-gluon scattering...

Moritz Greif (AG Greiner)

(2)

Constant Isotropic Cross Sections!

Compare BAMPS-results with analytic calculations: Remember Armando Puglisi's talk on Wednesday!

Constant Isotropic Cross Sections, linearized 22-Collision Operator!

Idea: Solve the Boltzmann equation for $f_k(x, p)$ after small perturbation, get σ_{el} from f_k . Expect high precision!

- Boltzmann equation, Linearized collision operator $\rightarrow \sigma_{tot}$
- External force-term: $qF^{\mu\nu}k_{\nu}\partial/\partial k^{\mu}f(\vec{k},x)$ (*E*-field inside)
- Expand... $f = f_0 + \delta f$
- Current $j\sim \int \mathrm{d}P\delta f...\times E$
- Expand δf in energy: $\sum_n a_n E^n$
- \bullet Solve for $a_n^\prime s$

Results so far

0+1's order in Energy is 25% off BAMPS, 2^{nd} almost done :-)

Constant Isotropic Cross Sections, linearized 22-Collision Operator!

Example: Result for order 0 in energy:

$$\sigma_{\rm el} = \frac{1}{\sigma_{\rm tot}} \frac{4 n_u q_u^2 + 4 n_d q_d^2}{(10 n_u + 5 n_g + 10 n_d) T}$$

- n_u, n_d, n_g : densities of ups, downs, gluons
- q_u, q_d : electric charge of ups, downs
- T Temperature

Warning! next order 75% different - look for convergence!

Results for more realistic physics

- Use elastic $(2 \leftrightarrow 2)$ pQCD-Cross Sections
- Use Full-pQCD-Cross Sections (also 2 ↔ 3 processes)
- Compare with lattice and other models

$\Rightarrow \alpha_s$: check **running** coupling vs. **fixed** coupling

BAMPS results compared to lattice

Moritz Greif (AG Greiner)

26.09.2014 28

BAMPS results compared to lattice

Moritz Greif (AG Greiner)

AM MAIN

BAMPS results compared to lattice

BAMPS results compared to lattice

E SITÄT AM MAIN

Heat Conductivity of the QGP

Heat flow in relativistic Navier-Stokes theory

- Heatflow: Energy transfer through *collisions* of particles
- Non-relativistic definition: $Q=-\kappa\bigtriangledown T$
- Navier-Stokes heat conductivity κ

FRANKFURT AM MAIN

Heat Conductivity of the QGP

Numerical results for elastic cross-sections

Use textbook-picture-method:

Figure : MG et al., Phys. Rev. E 87, 033019 (2013)

Check: Green-Kubo gives the same result!

Numerical results for full inelastic cross-sections

Realistic heat conductivity estimation for the QGP

Heat Conductivity of the QGP

QGP Heat Conductivity, Other Calculations!

Figure : Comparisons of the heat conductivity coefficient KGOETHE

Thank you for listening!

- Electric conductivity using BAMPS
- Two methods confirm each other
- Analytical calculation: soon
- Relaxation time estimation ...okaj
- Full inelastic pQCD scattering rates from BAMPS
- Comparison of transport coefficients amongst different groups difficult

Thank you for listening!

Special thanks for excellent teamwork and support goes to:

- Carsten Greiner
- Ioannis Bouras
- Armando Puglisi
- Jan Uphoff
- Christian Wesp
- Florian Senzel
- Hendrik van Hees
- and many more ...

Appendix 1) The AMY Electric Conductivity σ_{el}

Paper:

$$\sigma_{\rm el} = \left(\frac{{\rm number} \times N_{\rm lept\,ons}}{3\pi^2 + 32N_{\rm species}}\right) \frac{T}{e^2 \ln e^{-1}} \tag{3}$$

P.Arnold, G.D. Moore, L.G. Yaffe. Transport coefficients in high temperature gauge theories (1): leading-log results. Journal of High Energy Physics, Nov 2000

The AMY Electric Conductivity $\sigma_{\rm el}$

Paper:

$$\sigma_{\rm el} = \left(\frac{{\rm number} \times N_{\rm leptons}}{3\pi^2 + 32N_{\rm species}}\right) \frac{T}{\frac{e^2 \ln e^{-1}}{2\pi a^2 T^{-1}}}$$

with $n \sim T^3, \ m \sim T$, lepton charge q and transport relaxation time $\tau = (e^4 T \ln e^{-1})^{-1}$

Note!

- Neglects quark contribution to electric curent!
- \bullet ... Departures from $f_{\rm equilibrium, quarks}$ small
- ... Rate of strong qq interactions higher than EM

Direct comparison to BAMPS difficult

example

For
$$u,d,s$$
 + e,μ : $\sigma_{\rm el}=12.3 \frac{T}{e^2 \ln e^{-1}} \approx 1.3T$ with $e^2=4\pi/137$

(4)

Appendix 2) Anderson-Witting Model

The Anderson-Witting model is a model for the collision term,

$$p^{\mu}\partial_{\mu}f_{q} + qF^{\alpha\beta}p_{\beta}\frac{\partial f_{q}}{\partial p^{\alpha}} = -\frac{p^{\mu}u_{\mu}}{\tau}\left(f_{q} - f_{\mathsf{eq},q}\right).$$
(5)

It allows for a relatively easy calculation of the quark distribution f_q after applying an external electric field. The gluon distribution remains thermal due to the above arguments $f_g = f_{eq,g}$. The result is

$$\sigma_{\rm el} = \frac{\tau_{qg} q^2 n x_g x_q}{4T} = \frac{\tau_{qg} q^2 n_g x_q}{4T} = \frac{q^2 x_q}{4\sigma_{22}T}.$$
 (6)

Kremer et al. start as well from (5) and obtain a similar result,

$$\sigma_{\mathsf{el}} = \frac{q^2 \tau_{qg} n_q}{12nT} \left(3n_e + 4n_g \right) = \frac{q^2 x_q}{4\sigma_{22}T} \left(\frac{n_q}{n_g} + \frac{4}{3} \right). \tag{7}$$

This expression was calculated taking partial heat fluxes and the cross-effects between heat and electric conductivity into account GOETHE WHICH were neglected in the first derivation.

Appendix 3) Principle of Lattice-QCD calculations of $\sigma_{\rm el}$

Lattice observable:

$$G_{\mu
u}(au, \vec{p}) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \left\langle J_{\mu}(au, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \right\rangle$$
 Euklidean correllator

Vector spectral function:

$$G_{\mu\nu}(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \rho(\omega, \vec{p}, T) \frac{\cosh(\omega(\tau - 1/(2T)))}{\sinh(\omega/(2T))}$$

Kubo-formula:

$$\frac{\sigma_{\mathsf{el}}}{T} = \left(\sum_{a=1}^{N_f} q_a^2\right) \frac{1}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$

Spectral function from Lattice

Different approaches in the lattice framework

Quenched approximation

- Reason: Only computer power
- Physics: Turn off vaccuum polarization effects of quark loops

Speak:
$$N_f=0$$
, no sea quarks,
no dynamical quarks

Formula:
$$S = S_{\text{gauge}} + S_{\text{quarks}} = \int d^4x \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \sum_{\text{flavors}} \log(\det M_i)$$

Appendix 4) The Analytic Variance: C(0) is known!

- Invented and applied by Christian Wesp for $\langle T^{xy}T^{xy}\rangle$.
- Check of the numerical value of C(0)

$$\mathcal{V}(N^1) = \mathcal{V}\left(\sum_i^N \frac{p_i^1}{p_i^0} \frac{1}{V}\right) = \sum_i^N \mathcal{V}\left(\frac{1}{V} \frac{p_i^1}{p_i^0}\right) = \frac{n}{V} \frac{1}{3},$$

in equilibrium: $n = \frac{d_{\text{species}}}{\pi^2}T^3$

• Local in time: Interactions irrelevant!

High-precision integration

$$C(t) = C(0)e^{-t/\tau} = q^2 \frac{n}{3V}e^{-t/\tau}$$

Errors only in τ !

FRANKFURT AM MAIN

Appendix 5) Electric conductivity of the QGP: Applications

1. Diffusion of magnetic fields...

governed by
$$\Delta ec{B}=\sigma_{\sf el}\partial_tec{B}$$
B-fields with $L\sim\sqrt{rac{t}{4\pi\sigma_{\sf el}}}$ are damped in the universe

Baym, Heiselberg, Phys. Rev. D56 (1997) 5254-5259 Tuchin, arXiv:1301.0099

Electric conductivity of the QGP: Applications

2. Thermal emission rate of $\gamma's$ (and dileptons)

$$E\frac{dR}{d^3p} = \frac{-2}{(2\pi)^3} \mathrm{Im} \Pi^{ret,\mu}_{\mu} \frac{1}{e^{E/T} - 1}$$

$$\begin{split} \frac{-2}{e^{E/T}-1} \mathrm{Im}\tilde{\Pi}^{\mathrm{ret}}(k) &= \tilde{\Pi}^{<}(k) \\ &= i\frac{1}{Z}\sum_{f,i}e^{-\beta H_{i}}(2\pi)^{4}\delta(p_{i}-p_{f}-k)\left\langle i|j_{\mu}^{\dagger}(0)|f\right\rangle\left\langle f|j_{\nu}(0)|i\right\rangle \end{split}$$

Green-Kubo Formula

$$\sigma = \frac{1}{6} \lim_{\omega \to 0} \frac{1}{\omega} \int d^4 x e^{i\omega t} \left\langle [j_i(t, \vec{x}), j_i(0)] \right\rangle$$

FRANKFURT AM MAIN

Appendix 5) Heat flow in relativistic Navier-Stokes theory

- Heatflow: Energy transfer through collisions of particles
- Non-relativistic definition: $Q=-\kappa\bigtriangledown T$
- Navier-Stokes heat conductivity κ

Wanted: value for κ

Useful form for q^{μ} :

$$q^{\mu} = -\kappa \frac{nT^2}{\epsilon + p} \bigtriangledown^{\mu} \left(\frac{\mu}{T}\right) = \kappa \left(\bigtriangledown^{\mu} T - \frac{T}{\epsilon + p} \bigtriangledown^{\mu} p\right)$$

(Valid for a small Knudsen number λ_{mfp}/L_{mac} and first order in deviation from equilibrium) AND

$$q^{\mu} \equiv \Delta^{\mu lpha} u^{eta} T_{lpha eta}$$

with the dissipative energy-momentum tensor $T_{\alpha\beta}$.

 $\nabla^{\mu} = \partial^{\mu} - u^{\mu}D$: space-like Gradient, $D = u^{\mu}\partial_{\mu}$: comoving time derivative, $\Delta^{\mu\alpha} = u^{\mu}u^{\alpha} - g^{\mu\alpha}$

Const. pressure, static 0 + 1-dim. system:

$$\kappa = \frac{q^x}{\gamma^2 \partial_x T(x)}$$

Numerical results for elastic cross-sections

This work: $\kappa \sigma_{22} = 2.59 \pm 0.07$, Denicol et al, RTRFD: $\kappa \sigma_{22} = 2.5536$ ($\sigma_{22} = 0.043 \ mb - 430 \ mb$, elastic, ultrarelativistic Boltzmann particles)

BAMPS - partonic cascade

- Different temperatures in reservoirs $(T_l = 0.5 \ GeV, \ T_r = 0.3 \ GeV)$
- Fugacity in left reservoir was (arbitrarily) set to 1
- We required p = const. everywhere

•
$$\ldots \epsilon_l, \epsilon_r, n_l, n_r$$
 follow via $\epsilon = 3p = 3nT$

(See arXiv:hep-ph/0406278v2, arXiv:1003.4380v1, ...)

Numerical details: How to set up a Temp.-Gradient

Reservoirs have different density *n*:

n(x) = ax + b

 \Rightarrow Temperature (const = p = nT)

$$T(x) = p/(ax+b)$$

Linear density profile in ultrarelativistic cascade

$$n(x) = \frac{n_r - n_l}{L + 2\lambda_{mfp}} x + \frac{n_r - n_l}{2} + n_l, \quad \lambda_{mfp} = \frac{1}{n\sigma} \sim 0.65 \Rightarrow Kn = \frac{\lambda_{mfp}}{L} \sim 0.065$$
(8)

Appendix 6 Simple Relaxation-Time model

$$p^{\mu}\partial_{\mu}f_{q} + qF^{\alpha\beta}p_{\beta}\frac{\partial f_{q}}{\partial p^{\alpha}} = -\frac{p^{\mu}u_{\mu}}{\tau}\left(f_{q} - f_{\mathsf{eq},q}\right).$$
(9)

Assume

- assumes an exponential relaxation towards f_{eq}
- local rest frame of the fluid $u = (1, \vec{0})$
- Boltzmann-distribution of species a: $f_{eq,a} = d_a e^{-\beta p^0}$
- No spatial gradients at all

• Relaxation time:
$$au \ o \ au_{qg} = rac{1}{n_g \sigma_{22}}$$

• Expansion
$$f(x, \vec{p}, t) = f_{eq} + f_{eq}\phi$$

Relaxation-Time model A

Field-Strength tensor

$$F^{\mu\nu} = u^{\nu}E^{\mu} - u^{\mu}E^{\nu} - B^{\mu\nu}$$
(10)

Assume

• $B^{\mu\nu} = 0$

Then directly

$$\Rightarrow \quad \phi = \tau \beta q \vec{E} \cdot \frac{\vec{p}}{p^0} \tag{11}$$

And the current:

$$j^{x} = q \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{p^{x}}{p^{0}} f_{\mathbf{eq}}\phi = d_{q}\tau \frac{8}{3} \frac{\pi q^{2}}{(2\pi)^{3}\beta^{2}} E^{x}$$

Electric conductivity, model A

$$\sigma_{el} = d_q \frac{q^2}{3\pi^2} \frac{T^2}{n_g \sigma_{qg}} = \frac{1}{3} \frac{d_q}{d_g} \frac{q^2}{\sigma_{qg} T}$$
(12)

Moritz Greif (AG Greiner)

26.09.2014 55

Relaxation-Time model B

$$p^{\mu}\partial_{\mu}f_{q} + qF^{\alpha\beta}p_{\beta}\frac{\partial f_{q}}{\partial p^{\alpha}} = -\frac{p^{\mu}u_{\mu}}{\tau}\left(f_{q} - f_{\mathsf{eq},q}\right).$$
(13)

Steps:

- () Calculate 2^{nd} moment to obtain $\partial_{\mu}T^{\mu\nu}$
- 2 Neglect partial heat fluxes
- Use equilibrium- $T^{\mu\nu}$ for gradient

 σ

- Project on spatial direction

Yields

Electric conductivity, model B

Green-Kubo formula... Get a feeling

(a) Typical corr., $T=0.5/0.6~{
m GeV}$

(b) Current fluctuation

$$\sigma_{el} = \frac{1}{TV} \int_{0}^{\infty} \mathrm{d}t \underbrace{\langle J_x(0) J_x(t) \rangle}_{\mathsf{Current-Current-Correllator}}$$

with electric current in x-direction $J_x(t)$, time t

Green-Kubo formula... How to get correlations?

