Probing novel long-range correlation phenomena in pPb collisions with identified particles at CMS

Zhenyu Chen (Rice University) for the CMS Collaboration

Hot Quarks Workshop 2014

Discovery of long range "ridge" in pPb

Similarity between pPb and PbPb collisions

Remarkable similarities in pPb and PbPb for same multiplicities

- Mass ordering at low p_T seen in AA collisions.
- A cross-over of v₂ observed at around 2 GeV

Quark Number Scaling

- Number of constituent quark scaling (NCQ) observed in AA collision.
- A possible indication of parton degree of freedom.

Study mass dependence and NCQ scaling for a wide p_T range in CMS:

- In high multiplicity pPb collision events
- Compare results with same multiplicity in PbPb collisions

Data set, triggers and multiplicity distribution

V⁰ Candidates Reconstruction

- The K⁰_s and Λ candidates (generally referred to as V⁰) are reconstructed by combining pairs of oppositely charged tracks.
- $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$, ct = 2.68cm
- Λ → p⁺π⁻, cτ = 7.89cm
- Cos(θ^{point}) > 0.999
- 3D separation between primary and V⁰ vertex > 5σ

V⁰ Candidates Reconstruction

- V⁰ peaks can be clearly identified with little background for K_{s}^{0} and Λ constructed over wide range of p_{T} and η
- Mass values very close to PDG numbers

Extraction of v_n signal

Two-particle correlation function

- Two-particle correlation functions are constructed for:
 - K_{s}^{0} as trigger, inclusive charged hadron as associated, K_{s}^{0} -h[±].
 - Λ as trigger, inclusive charged hadron as associated, Λ -h[±].

Extraction of v_n

Low multiplicity v_2 in pPb and PbPb

- v₂ patterns are compatible for K⁰_s, Λ and inclusive charged hadron at low multiplicity (<60) for both pPb and PbPb
- At 60-120 multiplicity, a hint of a deviation of v_2 between K_s^0 and Λ is observed.

High multiplicity v_2 in pPb and PbPb

Mass ordering below 2 GeV and a cross-over at around 2 GeV observed.

NCQ scaling of v₂ in pPb and PbPb

High multiplicity v_3 in pPb

Similarity between v_2 and v_3 in pPb:

- Mass ordering below 2 GeV and a cross-over at around 2 GeV
- NCQ scaling holds within 20%

Conclusion

- Second-order (v_2) and third-order (v_3) anisotropy harmonics of K_S^0 and Λ particles are presented over wide multiplicity range and broad p_T range in pPb collisions
 - Compared to PbPb results with same multiplicities
- Low multiplicity ($N_{trk}^{offline} < 60$)
 - v_2 are compatible for K_s^0 and Λ in both pPb and PbPb collisions
- Higher multiplicity ($60 < N_{trk}^{offline} < 350$)
 - Mass ordering of v₂ and v₃ observed in pPb collision, more prominent than in PbPb collision at same multiplicities
 - A cross-over at around 2 GeV is observed for both pPb and PbPb collisions
- Number of constituent quark (NCQ) scaling of v₂ and v₃ observed in high multiplicity pPb collision
 - Holds better than in PbPb collision at same multiplicities

Back up

Two-particle correlation function

v_n^{signal} calculation

High multiplicity v_3 in PbPb

Comparison to ALICE result

Comparison to ALICE result

ALICE PbPb v2

