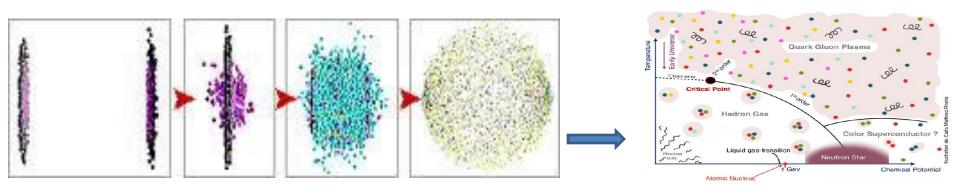
The study of strange mesons in p+p, d+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Priyanka Sett Senior Research Fellow Bhabha Atomic Research Center, Mumbai, India (For PHENIX Collaboration) Hot Quarks Workshop 2014, Las Negras



Outline

- ✓ Introduction
- ✓ Earlier measurements on Strange meson
- ✓ Brief overview of PHENIX detector systems
- ✓ Recent Measurements
 - Analysis
 - Results
- \checkmark Summary and Conclusions

Introduction

- High energy heavy ion collisions result in phase transition of hadronic matter to QGP.
- Till date RHIC and LHC are the biggest facilities for the high energy experiments.
- High p_T particle suppression due to energy loss of partons inside the medium, is one of the most important QGP signals.

(Ref: Phys.Rev. D44 (1991) 2625-2630, Lect.Notes Phys. 785 (2010) 285-339)

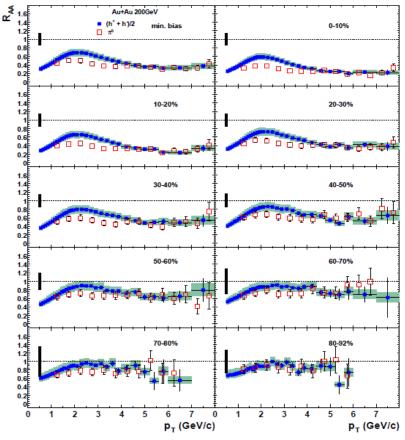
• Modification of the spectrum due to energy loss can be quantified by,

$$R_{AB}(p_T) = \frac{d^2 N^{AB}/dp_T dy}{(\langle N_{coll} \rangle/d^2 N^{pp})/dp_T dy}$$


 $R_{AB} = 1 \rightarrow$ No medium effects present

 $R_{AB} \neq 1 \rightarrow$ Medium effects present $R_{AB} < 1 \rightarrow$ Energy loss occurred due to medium

G. Martinez arXiv:1304.1452


Introduction

Experimental evidences of high p_T particle suppression: RHIC

In RHIC, for central Au+Au collisions, R_{AA} ---- decreases from peripheral to central collisions for charged hadrons.

- is consistent with unity for photons within uncertainties.
- is greater than 1 for protons at intermediate p_T.
- is similar for η and π^0 , also ω .
- for particles containing strange quarks (K^{\pm}, ϕ) lie in between of other mesons and protons.

PHENIX Coll. Phys.Rev. C69 (2004) 034910

Introduction

- Motivation of strange measurement:
 - Strange particle measurements provide additional constraint on energy-loss model prediction.
 - The effect of flow and recombination on strange hadron production at intermediate p_T is an important study.
 - The behavior of strange hadrons in heavy ion collisions are interesting, as;
 φ is suppressed as π⁰ at high p_T but has a different trend in low and intermediate p_T.
 - \circ η meson is similarly suppressed like π^0 at high p_T .
 - \circ charged kaon suppression in the measured p_T range (< 2 GeV/c) does not show π^0 like behavior.

Measurements of K_s^0 and K^{*0} will provide more systematic in strange hadron study and hence of great importance.

Earlier measurements on strange mesons

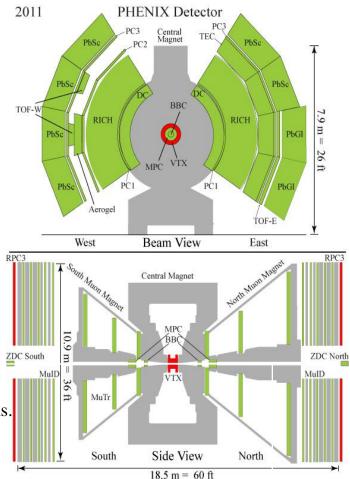
PHENIX has already measured different strange mesons in p+p, d+Au, Au+Au, Cu+Cu collisions at different energies.

Particles	Systems	$\sqrt{s_{NN}}$ in GeV	Decay Modes	
Kaon	<i>p+p</i> <i>d</i> +Au and Au+Au	200, 62.4 200		Earlier Measurements
φ	<i>p+p</i> , <i>d</i> +Au, Cu+Cu and Au+Au	200	K ⁺ + K ⁻ (48.9%)	East
K_8^0	<i>p+p, d</i> +Au and Cu+Cu	200	$\pi^0 + \pi^0$ (30.69%)	Recent Measurements
K *0 26-Sep-14	p+p, d+Au and Cu+Cu Priyar	200 nka Sett, Hot Quarks - 2014	$K^{\pm} + \pi^{\pm} (\sim 67\%)$	Rec

Brief overview of PHENIX detector systems

Information used	Detector	
 i) Event Triggering ii) Collision Time and z_{vertex} & iii) Centrality Determination 	Beam-Beam Counter (BBC)	
Track reconstruction and momentum determination	Drift Chamber (DC) and 1st Pad Chamber (PC1)	
Rejection of secondary tracks	2 nd & 3 rd Pad Chambers	
Charged hadron ID	Time of Flight (ToF)	
Photon position and energy measurement	Electro-Magnetic Calorimeter (EMCal)	

System Specifications :


• BBC z_{vertex} position resolution: ~ 1.1 cm in p+p to 3 mm in Au+Au collisions.

• Momentum resolution for charged particles with $p_T > 0.2 \text{ GeV/c}$, $\delta n/n = 0.7 \oplus 1.1.9$, n (CoV/c)

 $\delta p/p = 0.7 \oplus 1.1 \% p \text{ (GeV/c)}.$

- ToF timing resolution ~ 130 ps. π/K separation up to $p_T \sim 2.5$ GeV/c and K/p separation up to $p_T \sim 4.5$ GeV/c.
- EMCal energy and spatial resolution for PbSc (PbGl)

 $\delta E/E = 21(0.8) \% \oplus 8.1 (5.9) \% / \sqrt{E} (GeV) \% \int_{\text{Priyanka Sett, Hot Quarks - 2014}} 5.74 (8.4) \% / \sqrt{E} (GeV) \text{ mm.}$

Recent Measurements

Recent measurements consist of : • Data Analysis. • Results. For,		Data analysis consist of :Meson reconstruction.Efficiency Calculation.		
	S ⁰ meson meson			Tesults consist of : Invariant yield p_T spectra. K_S^{0/π^0} ratio. Nuclear Modification factor.
	Collision System	Centrality bins (%)	Measured p_T range (GeV/c)	K _s ⁰ measurement in <i>p</i> + <i>p</i> collisions is studied in Phys. Rev. D 83 , 052004 (2011).
K_{S}^{0} K^{*0}	d+Au Cu+Cu p+p d+Au Cu+Cu	$\begin{array}{c} 0-20,\ 20-40,\ 40-60,\ 60-88\\ 0-20,\ 20-60,\ 60-94\\ \hline \\ 0-20,\ 20-40,\ 40-60,\ 60-88\\ 0-20,\ 20-40,\ 40-60,\ 60-94\\ \end{array}$	2.0-13.0 3.0-12.0 1.1-8.0 1.1-8.5 1.4-8.0	K _s ⁰ measurement covers intermediate and high p _T K ^{*0} measurement covers low and intermediate p _T

arXiv: 1405.3628

Data analysis : Meson reconstruction.

 K_{S}^{0} meson K_{S}^{0} →π⁰(→ γγ) π⁰(→ γγ), *cτ* = 2.7 cm

π⁰ reconstruction from γγ:
E_γ > 0.2 GeV (d+Au and Cu+Cu peripheral), E_γ > 0.4 (other centrality for Cu+Cu)
Both γ forming π⁰, are in the same EMCal sector.
Asymmetry cut : |E₁ - E₂|/|E₁ + E₂| < 0.8

• K_S^0 reconstruction from $\pi^0 \pi^0$:

 ⁰ p_T > 1.0 GeV/c for d+Au,

 > 1.5 GeV/c for Cu+Cu with centrality >20%
 > 2 GeV/c for Cu+Cu centrality < 20%

 Corrections due to in-flight decay of K_S⁰ are included.

 $\mathbf{K}^{*0} \operatorname{meson}_{\mathbf{K}^{*0} \to \mathbf{K}^{+} \pi^{-} \text{ or } \mathbf{K}^{-} \pi^{+}, c\tau = 4 \text{ fm}$

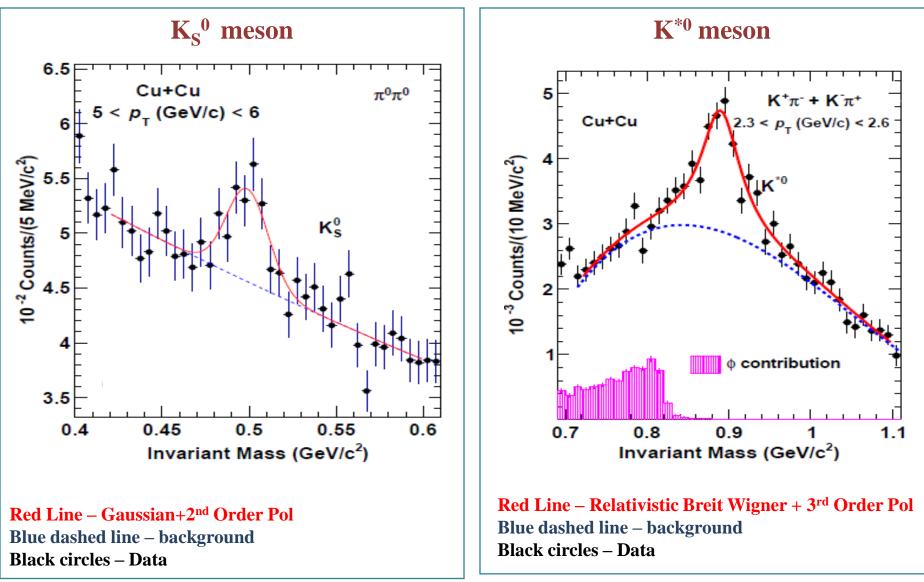
• Track Selection cuts and criteria:

> p_T > 0.3 GeV/c.

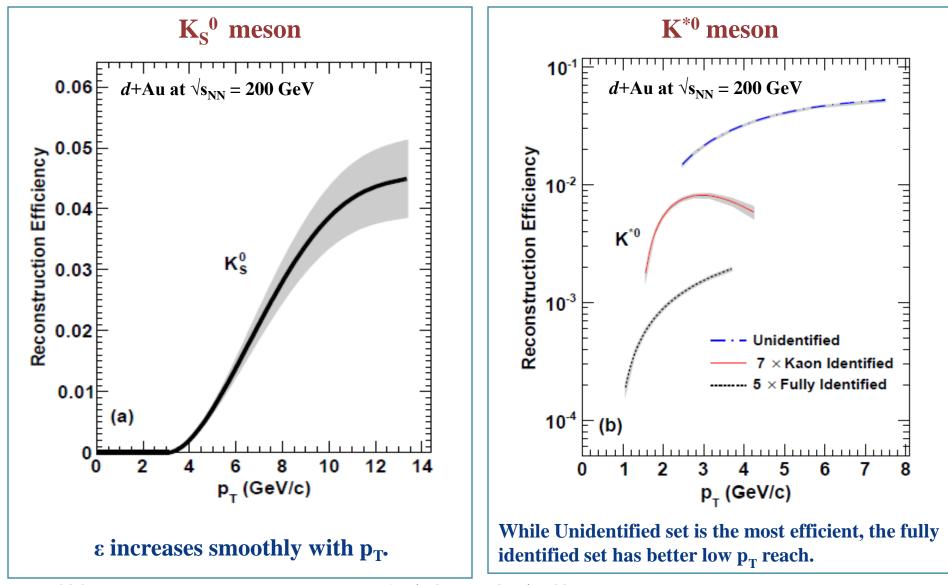
Two oppositely charged track are selected in an event.

➢ Fully identified – Tracks are identified in ToF as kaons and pions.

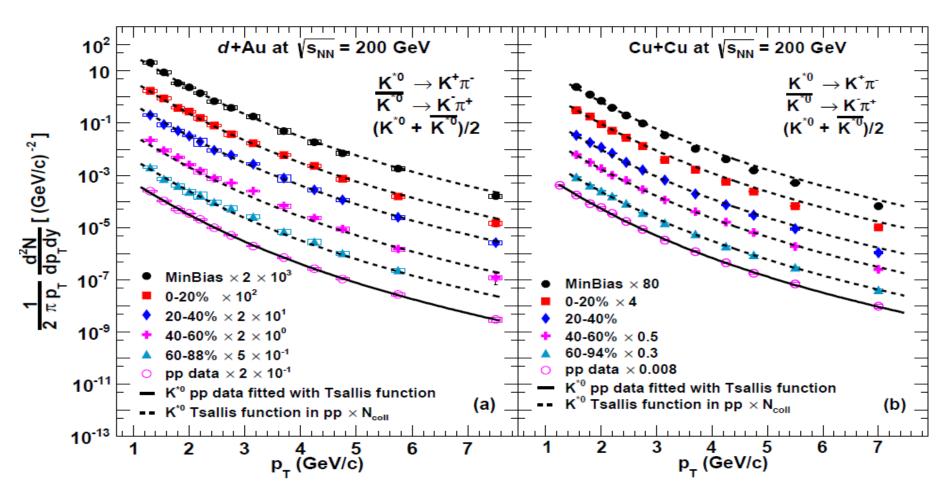
➤ Kaon Identified – Kaons are identified in ToF and the other track is matched in PC3 and given the mass of pion.


Unidentified – Both tracks are PC3 matched.

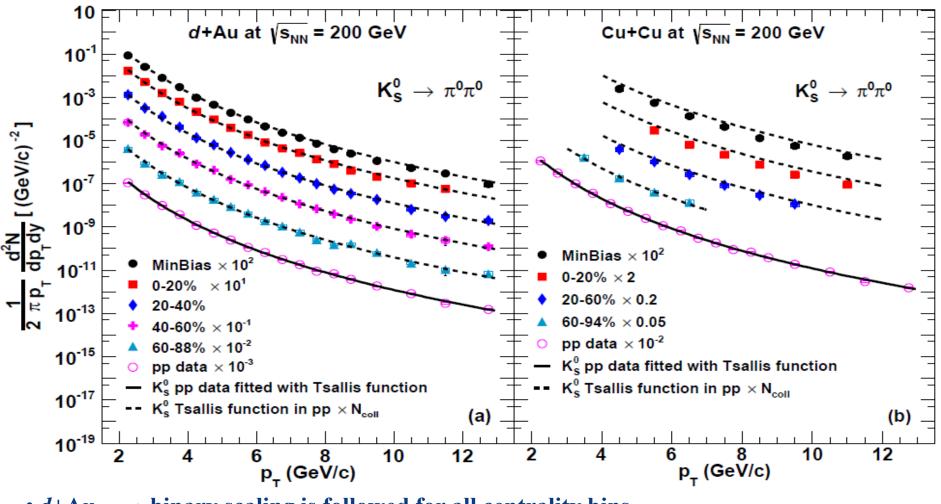
• Background removal :


Uncorrelated background are removed by event-mixing technique.

≻ Contributions from mis-identified tracks are also removed (e.g. $\phi \rightarrow K^+ K^-$, $K_S^0 \rightarrow \pi^+ \pi^-$).

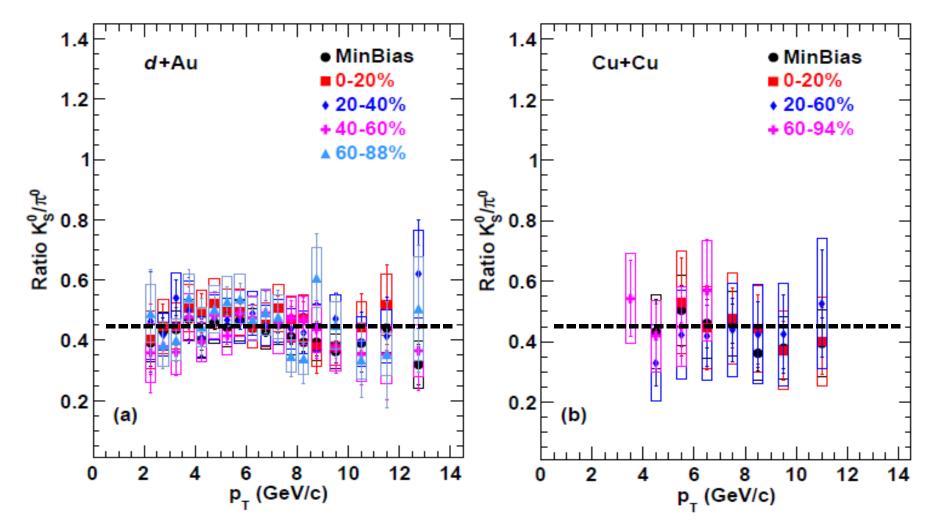

Data analysis : Meson reconstruction.

Data analysis : Reconstruction Efficiency (ε)

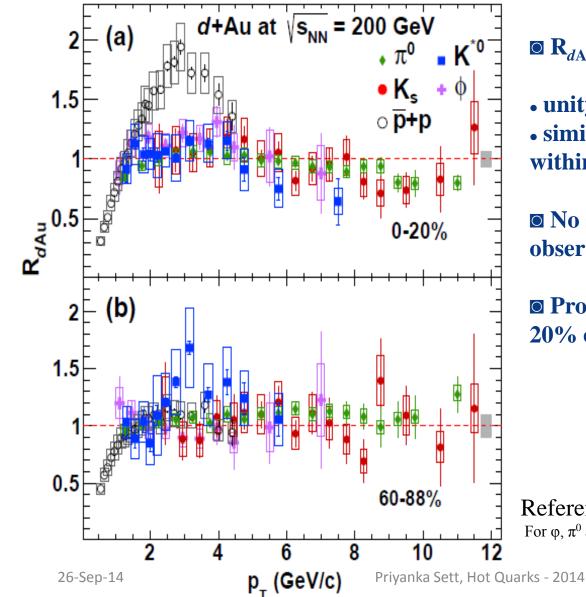


Results : Invariant yield p_T spectra for K^{*0} meson

• d+Au → binary scaling is followed for all centrality bins.
 • Cu+Cu → binary scaling followed only in peripheral bins.
 → Yields in central and semi-central show suppression at high p_T.


Results : Invariant yield p_T spectra for K_S^{0} meson

• $d+Au \rightarrow$ binary scaling is followed for all centrality bins.

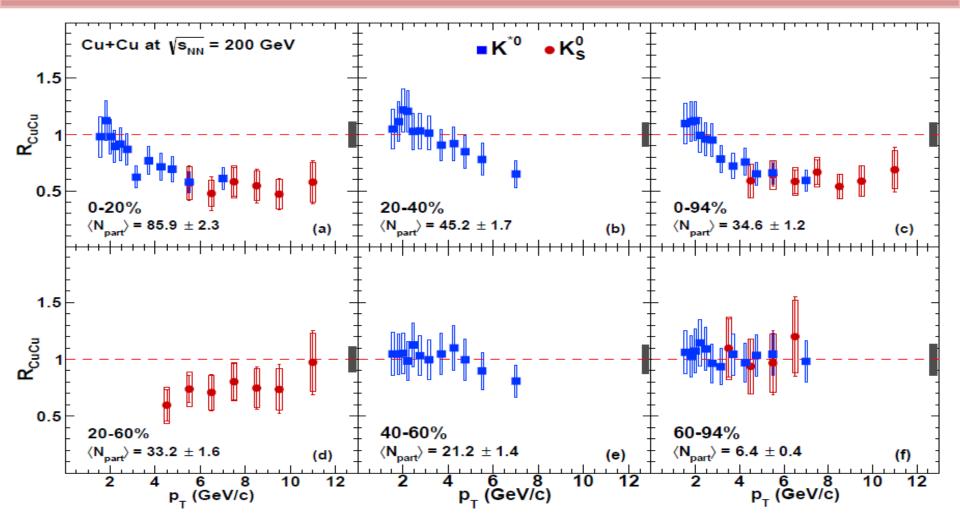

- Cu+Cu \rightarrow binary scaling followed only in peripheral bins.
 - \rightarrow Yields in central and semi-central show suppression at high p_T.

Results : K_S^0/π^0 ratio

The ratio is ~ 0.45 within uncertainties in the measured p_T range.

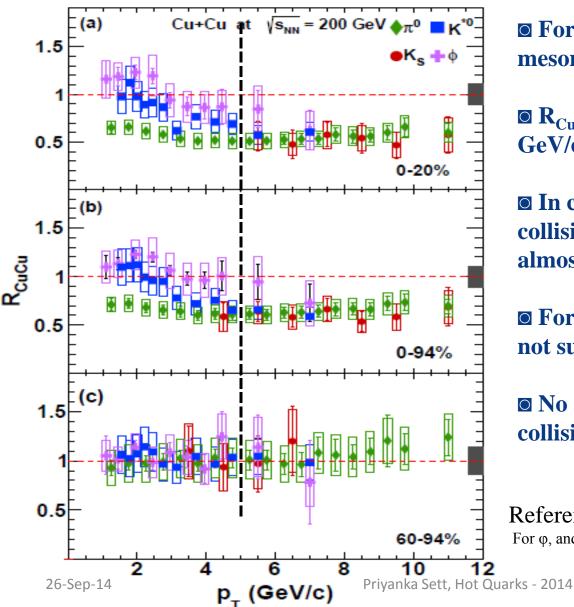
Results : R_{dAu}

 $\square \mathbf{R}_{dAu}$ for \mathbf{K}_{S}^{0} and \mathbf{K}^{*0} is -----


- unity for $p_T > 1$ GeV/c.
- similar to the R_{dAu} of ϕ and π^0 mesons within uncertainties.

No significant cold nuclear effects observed for mesons.

Proton shows an enhancement in 0 – 20% centrality.


References : For ϕ , π^0 and p references please see arXiv: 1405.3628

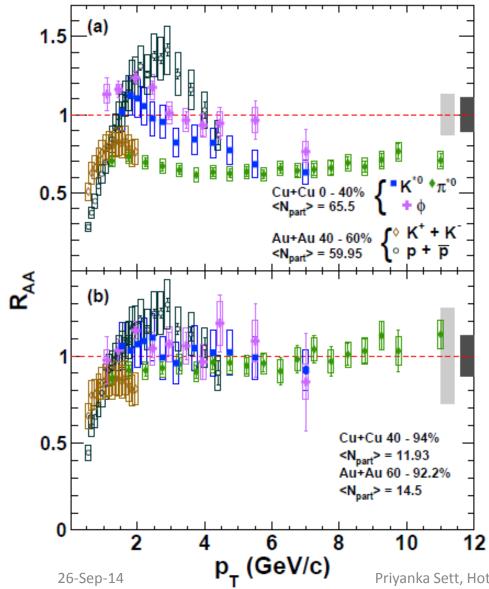
Results : R_{CuCu} ($K_S^0 \& K^{*0}$)

• Suppression gradually decreases with the decrease of $<N_{part}>$. • For 0 – 20%, $R_{CuCu} \sim 0.5$ for both K* and K_S^{-0} above $p_T > 5$ GeV/c. • For peripheral collisions, R_{CuCu} is unity within error bars.

Results : R_{CuCu}

■ For $p_T > 5$ GeV/c, $R_{CuCu} < 1$ for all mesons for 0 - 20% and 0 - 94% bins.

 $\blacksquare\ R_{CuCu} \sim 0.5$ for all mesons for $p_T > 5$ GeV/c for 0-20% bin.


In central and minimum bias collisions, π^0 is most suppressed and is almost flat with p_T .

• For $p_T \sim 1 - 2$ GeV/c, K^{*0} and φ are not suppressed.

No suppression in peripheral collisions.

References : For φ , and π^0 references please see arXiv: 1405.3628

Results : R_{AA}

• A comparison is shown among π^0 , K^{*0}, φ in Cu+Cu collisions and charged kaons and protons in Au+Au collisions for the similar $\langle N_{part} \rangle$.

Central Collisions :

• For all $p_T \pi^0$ s are the most suppressed.

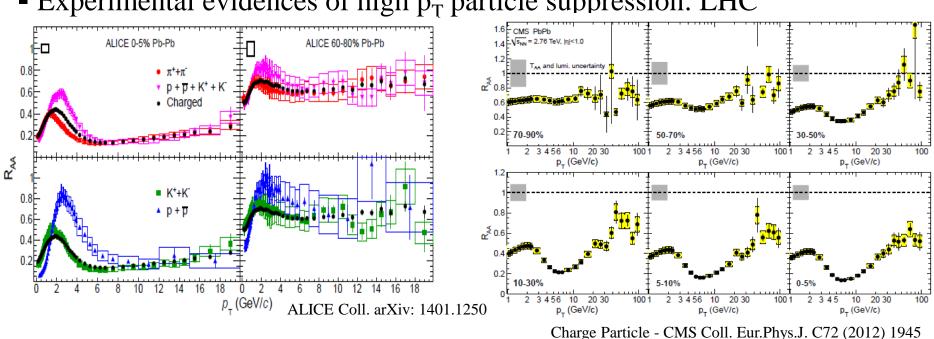
• For $2 < p_T < 5$ GeV/c,

• protons are enhanced.

- K^{*0} and φ are less suppressed than π⁰
 but more suppressed than proton.
- At high p_T , suppression is similar for all particles. \rightarrow energy loss occurs at partonic level.

Peripheral Collisions :
 R_{AA} is unity for all particles for p_T > 2 GeV/c.

References :


Priyanka Sett, Hot Quare $\Phi_2 \sigma_4^0 p$ and K[±] references please see arXiv: 1405.3628

The p_T distribution and the nuclear modification factors for K_S⁰ and K^{*0} meson are presented in *p*+*p*, *d*+Au and Cu+Cu collisions for √s_{NN} = 200 GeV.
The measurements of K_S⁰ and K^{*0} cover p_T = 3-13 GeV/c and 1.1-8.5 GeV/c

respectively.

- Similar to other mesons, both of these mesons show no CNM effects in d+Au collisions in the measured kinematic range.
- For peripheral Cu+Cu collisions, no nuclear modification is registered for both K_S^0 and K^{*0} meson.
- In central Cu+Cu collision, K_S^0 and K^{*0} suffer suppression. Above $p_T > 5$ GeV/c, all mesons suffer equal energy loss. \rightarrow energy loss originates at parton level.
- For $2 < p_T$ (GeV/c) < 5, the suppression of strange mesons lie in between of baryons and light quark meson.

Back up – Introduction

Experimental evidences of high p_T particle suppression: LHC

In LHC, for central Pb+Pb collisions, R_{AA} for ----• charged particles, kaons and pions are similar for $p_T > 6$ GeV/c. kaons lie between protons and charge particles in the low and intermediate $p_T \sim 0 - 8$ GeV/c. • charged particles is ~ 0.14 for $p_T = 5 - 10$ GeV/c, then increases to 0.5 for $p_T > 40$ GeV/c.

• protons is less than unity but is higher than kaons and pions.

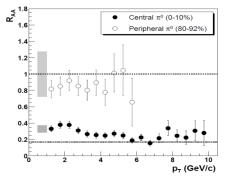
26-Sep-14

Protons are suppressed more at LHC, though the particle hierarchy remains 20 same as in RHIC.

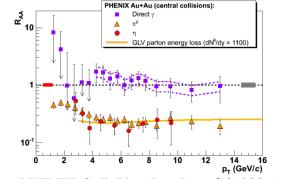
Qualitatively, similar behavior is observed in

Particles show similar suppression for $p_T > 5$

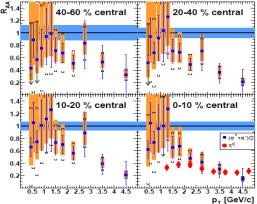
GeV/c irrespective of flavors with $R_{AA} \sim 0.2$.

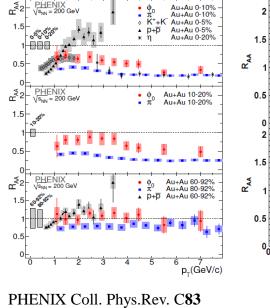

behavior between protons and light particles.

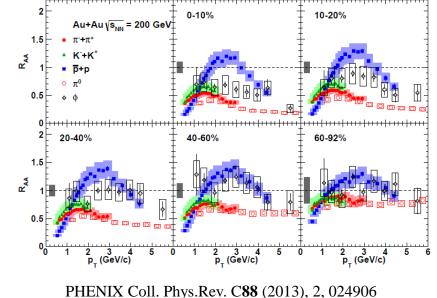
Also, kaon R_{AA} shows an intermediate


RHIC also : -

Back up – Introduction

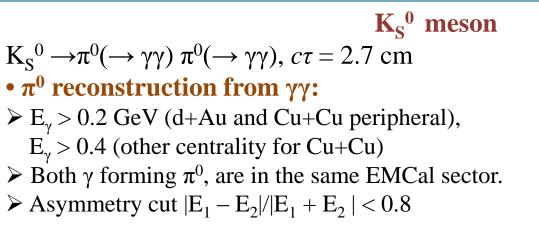

Some experimental evidences of high p_T particle suppression:


PHENIX Coll. Phys.Rev.Lett. 91 (2003), 072301


PHENIX Coll. Phys.Rev.Lett. 96 (2006) 202301

PHENIX Coll. Phys.Rev.Lett. **96** (2006) 032301

PHENIX Coll. Phys.Rev. C83 (2011).024909 26-Sep-14



Back up – PHENIX Subsystems

SubSystem	$\Delta \eta$	$\Delta \phi$	Special Features
Central (CM)	± 0.35	2π	Upto 1.15 Tm
Muon Magnet South	-1.12.2	2π	0.72 Tm for $\eta = 2$
Muon Magnet South	1.1 - 2.4	2π	0.72 Tm for $\eta = 2$
Beam Beam Counters	\pm 3.1 - 3.9	2π	Start timing for TOF
(BBC)			collision vertex,
			Minimum Bias Trigger
			and Centrality
Zero Degree Calorimeter	3 mrad	2π	Minimum Bias Trigger
(ZDC)			and Centrality
Drift Chambers (DC)	± 0.35	$2 \times \pi/2$	Good Momentum
			and mass resolution
			$\Delta m = 1\%$ at $m = 1$ GeV
Pad Chambers (PC)	± 0.35	$2 \times \pi/2$	Pattern recognization
			of tracks and
			tracking for non-bend
			non-bend direction
Ring Imaging	± 0.35	$2 \times \pi/2$	Identifies electron
Čerenkov (RICH)			
Time of Flight (ToF)	± 0.35	$2 \times \pi/2$	Identifies charged hadrons,
			resolution<100 ps
Electromagnetic			
Calorimeter (EMCal)		10	
EMCal (PbSc)	± 0.35	$\pi/2 + \pi/4$	Identifies electron and photon
EMCal (PbGl)	± 0.35	$\pi/4$	Identifies electron and photon
			Good e^{\pm}/π^{\pm} separation
			at $p_T > 1 \text{ GeV/c}$
26 Sep 14	Priyanka	Sett, Hot Quarks	by EM shower and $p < 0.35 \text{ GeV/c}$

22

Back up – Data Analysis

- K_S^0 reconstruction from $\pi^0 \pi^0 : p_T > 1.0$ GeV/c for d+Au,
 - > 1.5 GeV/c for Cu+Cu with centrality > 20%
 - > 2 GeV/c for Cu+Cu centrality < 20%

Correction due to Ks in flight decay

➤ Correction made for the π^0 s coming from K_S^0 decay by, $|M_{\gamma\gamma} - M_{\pi}^0 * R_M| < 2 \sigma_{\pi}^0 * R_{\sigma}$ for a particular p_T , where, $M_{\gamma\gamma}$ = reconstructed invariant mass of γ pair, M_{π}^0 and σ_{π}^0 parameterizations of the mass and 1- σ width of π^0 peak of inclusive π^0 mesons. R_M and R_{σ} are the correction factors which accounts the difference between inclusive π^0 and π^0 s from K_S^0 decays.

Back up – Nuclear Modification plots

Detailed ref for R _{dAu} plots :	References : φ A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 83 , 024909 (2011). π^0 S. S. Adler <i>et al.</i> (PHENIX Collaboration), Phys. Rev. Lett 98 , 17302 (2007). p A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 88 , 024906 (2013).
Detailed ref for R_{CuCu} plots	References : φ A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 83 , 024909 (2011). π^0 A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. Lett 101 , 162301 (2008).
Detailed ref for R_{AuAu} plots	References : φ A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 83 , 024909 (2011). π^0 A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. Lett 101 , 162301 (2008). p A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 88 , 024906 (2013). K [±] A. Adare <i>et al.</i> (PHENIX Collaboration), Phys. Rev. C 88 , 024906 (2013).

Back up – Mathematical forms

$$RBW = \frac{1}{2\pi} \frac{M_{K\pi} M_{K^{*0}} \Gamma}{(M_{K\pi}^2 - M_{K^{*0}}^2)^2 + M_{K^{*0}}^2 \Gamma^2}$$

Tsallis function

$$\frac{1}{2\pi} \frac{d^2 \sigma}{dy dp_T} = \frac{1}{2\pi} \frac{d\sigma}{dy} \frac{(n-1)(n-2)}{(nT+m(n-1))(nT+m)} \times \left(\frac{nT+m_T}{nT+m}\right)^{-n}$$