Measurement of electrons from charm and beauty-hadron decays in p-Pb collisions at $\sqrt{s}_{NN} = 5.02$ TeV with ALICE at the LHC

Jan Wagner for the ALICE Collaboration

Motivation

The ALICE detector

Analysis strategy

Results

Motivation - charm and beauty

TECHNISCHE UNIVERSITÄT DARMSTADT

Charm and beauty quarks (heavy-flavour, "HF"):

 Large mass -> production in initial hard partonic interactions

Heavy-ion collisions:

- Heavy quarks interact with the medium
- Modification of the momentum distribution due to energy loss
- ->Observed strong suppression of HF yield at high $p_{\rm T}$
- Experimental observable: nuclear modification factor R_{AA}:

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$$

ALI-PREL-31917

p-Pb collisions: measuring initial state effects

- p-Pb collisions:
 - no extended hot and dense medium
 - only cold nuclear matter effects:
 - Modified (g)PDF in nuclei
 - Shadowing / saturation at low x
 - k_{T} broadening
- Measure nuclear modification factor R_{pPb} of HF hadron yield to quantify cold nuclear matter effects

$$R_{\rm pPb} = \frac{1}{A} \frac{d \,\sigma_{\rm pPb}/dp_{\rm T}}{d \,\sigma_{\rm pp}/dp_{\rm T}}$$

How to measure charm and beauty production?

- Direct reconstruction of charm and beauty mesons in hadronic decay channels, e.g. D^o -> π^+ + K⁻ (BR ~3.88%)
 - Analysis based on fully reconstructed decay topologies displaced from the interaction vertex
 - D⁰, D⁺, D^{*+} and D_s⁺ cross section measured in pp, p-Pb and Pb-Pb collisions

->Talk: F. Colamaria

- Inclusive measurement via semileptonic decays,
 - e.g. c -> e + anything (BR ~9.6%)
 - Indirect measurement via inclusive electron spectrum from HF hadron decays
 - Background: all other sources of electrons (most important: γ conversions and Dalitz decays)

semileptonic decays of open charm and open beauty hadrons:

<u>A</u> Large Ion Collider Experiment

TECHNISCHE

UNIVERSITÄT DARMSTADT

Analysis strategy

- Measure raw electron spectrum with optimized tracking cuts and PID strategies (TPC:dE/dx, TOF:Time-Of-Flight, EMCal:E/p)
- Subtract the contribution of background electrons (two alternative methods)
- Correct for reconstruction efficiency and geometric acceptance
- Separation of electrons from charm and beauty quarks via impact parameter cut
- -> Get p_T differential cross section of electrons from heavy-flavour hadron decays and beauty-hadron decays
- Combine with pp reference to calculate nuclear modification factor R_{pPb}

Identification of electrons

Subtraction of background electrons

Separation of charm and beauty electrons

Electron identification: TOF, TPC & EMCal PID

- TOF symmetric 3σ cut around expected electron Time-of-Flight
- TPC $-0.5\sigma < dE/dx < 3\sigma$
- Negligible K and p contribution after TOF+TPC, increasing pion contamination with $p_{\rm T}$
- Hadron contamination estimated by fits to the dE/dx in momentum slices
- High p_T analysis done using the TPC and EMCal detectors:

 $-1\sigma < dE/dx < 3\sigma \& 0.8 < E/p < 1.2$

Non-HF electron background – cocktail with pion input

TECHNISCHE UNIVERSITÄT DARMSTADT

 Inclusive electron distribution contains electrons from all sources

Cocktail:

Electrons from all other sources than heavy-flavour hadrons

 Input for cocktail: measured charged pion dN/dp_T spectrum under the assumption:

$$\frac{dN}{dp_{\rm T}}(\pi^0) = \frac{dN}{dp_{\rm T}} \frac{(\pi^+ + \pi^-)}{2}$$

 Contributions from other mesons added using $m_{\rm T}$ scaling

Electron background subtraction

Main contribution to background electrons: photon conversions and Dalitz decays of light mesons (= "photonic" electrons)

 $\pi^0 \rightarrow \gamma \gamma; \gamma_{conversion} \rightarrow e^+ e^- \qquad \pi^0 \rightarrow \gamma e^+ e^-$

- Photonic electrons come in e+epairs with small invariant mass
- Combinatorial background subtraction with like-sign technique
- Remaining contribution taken from cocktail (weak Kaon decays "K_{e3}" & J/ψ)

Separation of charm and beauty

- Apply cut on electron impact parameter (IP) d₀ to increase S/B for b->e
- Remaining background removed by cocktail approach based on measured pion and D-meson cross sections

IP distribution for different electron sources

 Exploit long life time of beauty hadrons compared to charm hadrons:

> cτ(Dº) = 123 μm cτ(Bº) = 455 μm

*p*_T dependent cut on the minimum electron impact parameter:

> optimize S/B for b->e decays with MC simulations

Looser cut on minimum IP with increasing p_T due to lower statistics / less background

TECHNISCHE UNIVERSITÄT DARMSTADT

Raw electron yield contributions after impact parameter cut

TECHNISCHE UNIVERSITÄT DARMSTADT

 Increased e<-b contribution with simultaneous suppression of non-HF electrons

 Remaining fraction of electrons from charm-hadron decays needs to be estimated using MC simulations

 MC is weighted with prompt D-meson cross sections measured with ALICE (arXiv:1405.3452) and an estimate for the Λ_c->e contribution(ZEUS) (Eur.Phys.J., C44:351–366, 2005)

Results

TECHNISCHE UNIVERSITÄT DARMSTADT

Cross section of electrons from heavy-flavour hadron decays

Reference from pp collision

Nuclear modification factor

Electrons from HF - cross section

- Correction for the reconstruction efficiency and acceptance of the detector
- Systematics:
 - Measurement & detector: 7% - 29%
 - Cocktail: 6% 8.5%
 - Minimum bias p-Pb collision cross section: 3.4%
 - Specific for the b->e measurement:
 - D-meson input: hadron and *p*_T dependend 10% - 20%
- Different slope for electrons from beauty-hadron decays: beauty contribution dominant in high $p_{\rm T}$ region

on the \sqrt{s} dependence from

1/(2 π p_{T}) d² σ /(d p_{T} dy) ((mb)/(GeV/ c)². -FONLL, *s*=5.02 TeV FONLL uncertainty, \s=5.02 TeV

2

10⁻³

10

Reference for *R*_{pPb}

Cross section in pp collisions at $\sqrt{s} = 7$ TeV for electrons from heavy-flavour¹ and beauty² decays:

Extrapolation to 5.02 TeV based FONLL pQCD calculations"³

gg

ALICE Preliminary

■ b (\rightarrow c) \rightarrow e, \sum s=7 TeV • b (\rightarrow c) \rightarrow e, $\sqrt{s}=5.02$ TeV (scaled)

-FONLL uncertainty, \s=7 TeV

6

p_ (GeV/c)

-FONLL. \ s=7 TeV

[1] B. Abelev et al. (ALICE Collaboration) Phys. Rev. D 86, 112007 (2012) [2] B. Abelev et al. (ALICE Collaboration) Phys. Lett. B721, 13-23 (2013) [3] R. Averbeck et al. arXiv:1107.3243 [hep-ph], Jul 2011

$\frac{0}{ALI-PREL-76745}$ 2014-09-26 | Jan Wagner | The ALICE Collaboration | GSI | Hot Quarks 2014 | 17

Nuclear modification factor

- *R*_{pPb}(c,b->e) compatible with unity and model calculations which include:
 - Binary scaling of the cross section in pp collisions to the p-Pb collision system
 - Shadowing effects calculated on the basis of the EPS09 parametrization.¹

Summary

- Selection of electron candidates with TPC, TOF and EMCal detectors
- Background subtraction using electron cocktail or invariant mass approach
- Separation of electrons from beauty-hadron decays using a $p_{\rm T}$ dependent impact parameter cut
- Measurement of HF cross section in p-Pb collisions using the semileptonic decay channel
- R_{pPb} consistent with unity and model calculations including shadowing predictions
- Initial state effects are small, suppression seen in Pb-Pb collisions is a final state effect

Outlook

Analysis in multiplicity bins for p-Pb collisions

Backup

Hadron contamination

- Fits to electron and pion dE/dx in momentum slices (Kaon+Proton negligible)
- Obtain hadron contamination as function of particle momentum

ALT-PERF-518

TECHNISCHE

UNIVERSITÄT DARMSTADT

R_{pPb} vs results from PHENIX

• PHENIX results in d-Au collisions at $\sqrt{s} = 0.2$ TeV

A. Adare et al. (PHENIX Collaboration) Phys. Rev. Lett., 109:242301, Dec 2012.

