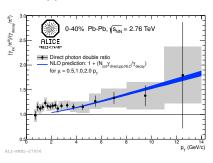
Study of neutral mesons in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV in the ALICE experiment at LHC

Hot Quarks Workshop

Lucia Leardini

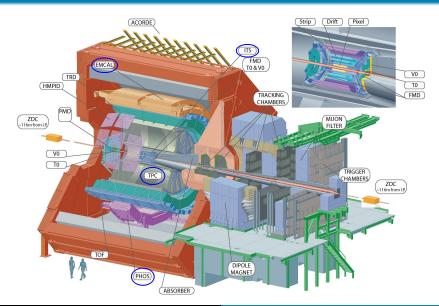
on behalf of the ALICE Collaboration

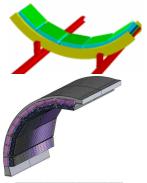

Physikalisches Institut Heidelberg University

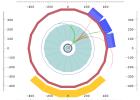
23 September 2014

Motivations

In heavy-ion collisions, π^0 and η measurements are used:

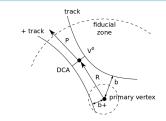

- ◆ to obtain nuclear modification factor R_{AA} and study nuclear effects
- ♦ to study the energy loss via particle suppression
- \bullet π^0 and η needed as input for direct-photon (and electron from heavy-flavour) measurement as they represent the largest source of decay photons (98%)

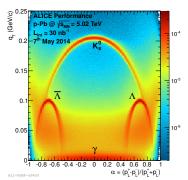

$\pi^{\rm 0}$ and η meson


	$\pi^0 = \frac{1}{\sqrt{2}}[u\bar{u}\rangle - d\bar{d}\rangle]$	$\eta = \frac{1}{\sqrt{6}}[u\bar{u}\rangle - d\bar{d}\rangle - 2 s\bar{s}\rangle]$
Mass	$0.135 \; { m GeV}/c^2$	$0.548 \; \mathrm{GeV}/c^2$
Decay	$\boxed{\pi^0 \rightarrow \gamma \gamma \rightarrow e^+ e^- e^+ e^-}$	$\eta ightarrow \gamma \gamma ightarrow e^+ e^- e^+ e^-$
B.R.	98%	39%

The ALICE experiment

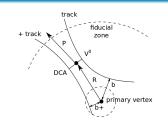
Photon detection with the ALICE experiment

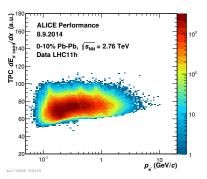



- PHOS calorimeter:
 - → PbWO₄ crystal
 - → 3 modules at 4.6 m from IP
 - $\rightarrow |\eta| < 0.13, 260^{\circ} < \phi < 320^{\circ}$
- ◆ EMCal calorimeter:
 - → 77 layers, 1.4 mm Pb and 1.7 mm scintillator
 - → 10 modules at 4.4 m from IP
 - $\rightarrow |\eta| < 0.7, 80^{\circ} < \phi < 180^{\circ}$
- ◆ Photon Conversion Method (PCM):
 - → conversion in detector material
 - → ITS and TPC

$$(X/X_0 = 11.4 \pm 0.5_{sys}\%)$$

 \rightarrow $|\eta| <$ 0.9, $0^{\circ} < \phi <$ 360 $^{\circ}$


The Photon Conversion Method



- Based on the reconstruction of photon conversions in the detector material by ITS and TPC
- ◆ Secondary vertex finder used to identify the conversion point: two oppositely charged secondary tracks selected considering their DCA < 1 cm</p>
- ♦ Secondary vertexes found are kept if:
 - → they lie inside of a fiducial zone
 - → the momentum vector of secondary vertex V⁰ (P) points to the primary vertex
 - → reconstructed tracks pass standard quality cuts
- ♦ Cut on R, minimum $p_{\text{T, track}}$, minimum fraction of TPC clusters to findable clusters, TPC n σ dE/dx for e^- and π

The Photon Conversion Method

- Based on the reconstruction of photon conversions in the detector material by ITS and TPC
- ◆ Secondary vertex finder used to identify the conversion point: two oppositely charged secondary tracks selected considering their DCA < 1 cm</p>
- ◆ After electron selection, additional cuts specific for photons are applied to increase sample purity
 - \rightarrow cut on χ^2/ndf of reconstructed photons
 - → elliptic cut on Armenteros-Podolansky plot
 - \rightarrow cut on the ψ_{pair} angle (opening angle perpendicular to B field)
 - → cosine of pointing angle

Data sets and MC simulations for collisions at 2.76 TeV

pp	Energy	$N_{\rm events}$
Data	$\sqrt{s} = 2.76 \text{ TeV} (2011)$	5.74e+07
MC	Pythia 6 (tune Perugia 0) Pythia 8	1.63e+06 3.14e+07
	Pythia 8 (Add GA sig.) Phojet	1.10e+07 2.92e+07

Pb-Pb	Energy	Centrality	$N_{\rm events}$
Data	$\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$	0- 5%	8.43e+05
	(2010)	5-10%	8.44e+05
		10-20%	1.68e + 06
		20-40%	3.37e+06
		40-60%	3.37e+06
		60-80%	3.37e+06
MC	$\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$	0- 5%	2.61e+05
	(Hijing)	5-10%	2.82e+05
	Minimum Bias	10-20%	6.28e+05
		20-40%	6.28e+05
		40-60%	1.73e+06
		60-80%	2.43e+06
		20-40%	7.46e + 05
	Minimum Bias	40-60%	8.76e+05
	$+$ flat $p_{\tau} \pi^{0}, \eta$	60-80%	1.24e+06
Data	$\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$	0-10%	1.9e+07
	(2011)	20-50%	1.3e + 07
МС	$\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$	0-10%	1.4e+06
	(Hijing)	20-50%	2.9e+06
	$+$ flat $p_{\tau} \pi^{0}, \eta$		

Invariant mass reconstruction

Photon candidates extracted from the V^0 s (secondary vertex particles) sample **are combined into pairs** for which the invariant mass is calculated, in p_T slices, according to transverse momentum binning of final meson spectra:

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{12})}$$

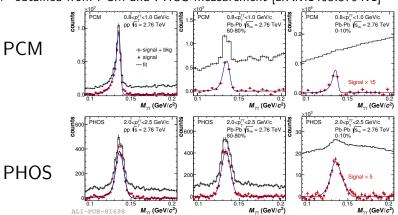
The background is calculated with the Event Mixing (EM) technique and normalized to the combined signal and background distribution

After the background subtraction, the distribution is fitted with:

$$y = A \cdot \left(G(M_{\gamma\gamma}) + \exp\left(\frac{M_{\gamma\gamma} - M_{\pi^0(\eta)}}{\lambda}\right) (1 - G(M_{\gamma\gamma})) \theta(M_{\pi^0(\eta)} - M_{\gamma\gamma}) \right) + B + C \cdot M_{\gamma\gamma}$$
 where $G = \exp\left(-0.5 \left(\frac{M_{\gamma\gamma} - M_{\pi^0(\eta)}}{\sigma_{M_{\gamma\gamma}}}\right)^2\right)$

Signal extraction

♦ PHOS:


- → adjacent cells with energy signals above a 12 MeV grouped into clusters then summed up to determine the photon energy
- → fit with Gaussian or a Crystal Ball function and linear fit to account for combinatorial background under the peak

◆ EMCal:

- → clusterizer searches for towers with energy above seed energy and adds all surrounding towers with energy higher than threshold; procedure stopped if neighboring tower energy is higher
- \rightarrow fit with a combined π^0 and η Crystal-Ball and a parabola for the background hypothesis
- ◆ PCM: fit using Gaussian function combined with exponential tail on left side of the peak (due to electron bremsstrahlung) and with linear fit to account for combinatorial background under the peak

π^0 signal extraction

 π^0 obtained from PCM and PHOS measurement [arXiv:1405.3794v1]

Black histogram: signal and background distribution Red points: signal after background subtraction

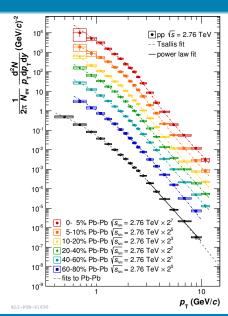
Blue line: fit to the signal

π^0 signal extraction

To extract the signal

- **♦** subtracted invariant mass distribution is integrated
 - ightarrow PHOS: \pm 3 σ around mean value of π^0 peak
 - ightarrow PCM: in a mass range around the fitted meson mass in an asymmetric window in order to include electron bremsstrahlung tail (m $_{\pi^0}$ 0.035 GeV/ c^2 , m $_{\pi^0}$ + 0.010 GeV/ c^2)
- → residual background is subtracted using the integral of the linear fit

Efficiency and acceptance obtained through Monte Carlo simulations


- \rightarrow PHOS: acceptance is zero for p_T < 0.6 GeV/c
- → PCM: efficiency is dominated by conversion probability

π^0 corrected yield

♦ Invariant differential π^0 yield:

$$E\frac{\mathrm{d}^3\mathit{N}}{\mathrm{d}^3\mathit{p}} = \frac{1}{2\pi}\frac{1}{\mathit{N}_{\mathrm{events}}}\frac{1}{\mathit{p}_{\mathrm{T}}}\frac{1}{\epsilon\mathit{A}}\frac{1}{\mathrm{B.R.}}\frac{\mathit{N}^{\pi^0}}{\Delta\mathit{y}\Delta\mathit{p}_{\mathrm{T}}}$$

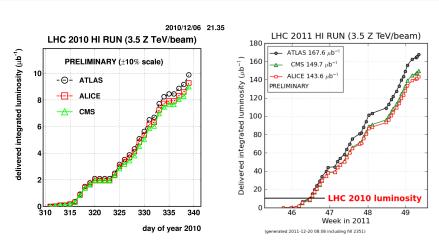
- ◆ Combined PHOS and PCM spectra obtained as a weighted average of the individual results [arXiv:1405.3794v1]
- ◆ The relevant systematic errors are yield extraction for PHOS and material budget for PCM

$\pi^0 R_{AA}$

 R_{AA} was calculated as a weighted average of individual measurements with PHOS and PCM \Rightarrow reduced systematic uncertainties

 \Rightarrow decrease of R_{AA} due to higher initial energy densities at larger $\sqrt{s_{NN}}$ dominates over increase due to harder initial parton p_T spectra

Conclusions on results with 2010 Pb-Pb collisions data

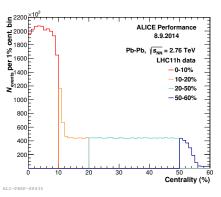

From the results obtained analysing the data on Pb-Pb collisions from 2010 it can be concluded:

- the two independent measurements with PCM and PHOS give consistent results
- ♦ π^0 suppression in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV stronger than in Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV at RHIC for all centralities

The η meson, interesting by itself, is also key measurement:

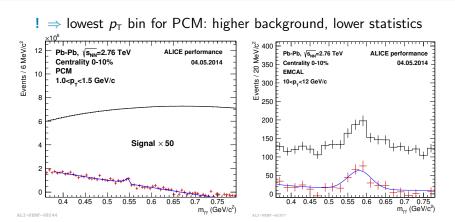
- lacktriangle compare η R_{AA} to π^0 R_{AA} and to η R_{AA} from RHIC results
- igspace η contribution needed to improve cocktail used to calculate the decay photons (only π^0 in the cocktail now, m_T-scaling is used to estimate contribution from the unmeasured mesons)
- η meson not measured before in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the LHC because statistics from Pb-Pb collisions collected in 2010 not sufficient for a significant measurement

Luminosity 2010 vs 2011


⇒ with large statistics collected in 2011 measurement of differential invariant cross section is possible

π^0 and η in 2011 data

With larger statistics available


- \star π^0 $p_{\rm T}$ range can be extended up to 14 GeV/c with PCM only
- $\bullet \eta p_T$ range:

$p_{T} \; (GeV/c)$
1 GeV/c - 10 GeV/c
5.5 GeV/c - 22 GeV/c
1 GeV/c - 22 GeV/c

 centrality trigger used: combination of triggers for central and semicentral events and minimum bias events (kCentral+kSemiCentral+kMB)

η signal extraction

Black histogram: signal and background distribution **Red points**: signal after background subtraction **Blue line**: fit to the signal and residual background distribution

Conclusions

- ✓ The two independent measurements with PCM and PHOS give consistent results
- ✓ Comparison with theoretical models (GLV calculations, WHDG model, EPOS, Nemchick et al. calculation)
- \checkmark π^0 suppression in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV stronger than in Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV at RHIC for all centralities
- \checkmark π^0 $p_{\rm T}$ range can be extended up to 14 GeV/c with data from 2011 Pb-Pb collisions
- \checkmark η measurable with data from 2011 Pb-Pb collisions with good significance
- η combined measurement from PCM and EMCal should range from $p_T = 1 \text{ GeV}/c$ up to 22 GeV/c

Conclusions

- ✓ The two independent measurements with PCM and PHOS give consistent results
- ✓ Comparison with theoretical models (GLV calculations, WHDG model, EPOS, Nemchick et al. calculation)
- \checkmark π^0 suppression in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV stronger than in Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV at RHIC for all centralities
- \checkmark π^0 $p_{\rm T}$ range can be extended up to 14 GeV/c with data from 2011 Pb-Pb collisions
- \checkmark η measurable with data from 2011 Pb-Pb collisions with good significance
- $ightharpoonup \eta$ combined measurement from PCM and EMCal should range from $p_{\rm T}=1~{\rm GeV}/c$ up to 22 ${\rm GeV}/c$

Thank you for the attention!

Back up

Analysis cuts - 2010 data

Conversion cuts

On-the-Fly
$ \eta < 0.65$
$5 \text{ cm} < R_{conv} < 180 \text{ cm}$
$p_{T,\;track} > 0.05\;GeV/c$
> 60%
$-3 < n\sigma_e < 5$
$n\sigma_{\pi} >$ 3 (0.4 GeV/ $c 100 GeV/c)$
$-5 < n\sigma_e < 5$
< 0.05 GeV/ <i>c</i>
< 20
< 0.05

Meson cuts

y cut	y < 0.6
$\alpha \operatorname{cut}$	$<$ 0.65 (central) (where $lpha= rac{E_{\gamma_1}-E_{\gamma_2}}{E_{\gamma_1}+E_{\gamma_2}})$
	< 0.8 (peripheral)

Analysis cuts - 2011 data

Conversion cuts

V0-finder	On-the-Fly
η cut	$ \eta < 0.9$
R cut	$5~{ m cm} < R_{conv} < 180~{ m cm}$
minimum track p_T	$p_{T,track} > 0.05 \text{ GeV}/c$
N _{clsTPC} N _{findablecls}	> 60%
$n\sigma_e$ TPC dE/dx	$-3 < n\sigma_e < 5$
$n\sigma_\pi$ TPC dE/dx	$n\sigma_\pi >$ 3 (0.4 GeV/ $c 100 GeV/c)$
$n\sigma_e$ TOF dE/dx	$-5 < n\sigma_e < 5$
$\frac{n\sigma_{e}\;TOF\;dE/dx}{q_{T}\;cut}$	$-5 < n\sigma_{\rm e} < 5$ $< 0.05~{\rm GeV}/c~({\rm 2D~cut},~(rac{lpha}{0.95})^2 + (rac{q_T}{\sigma_{T~max}})^2 > 1)$
q _T cut	$< 0.05 \; { m GeV}/c \; ({ m 2D \; cut}, \; (rac{lpha}{0.95})^2 + (rac{q_T}{q_{T,max}})^2 > 1)$

Meson cuts

y cut |y| < 0.85 α cut < 0.8 (where $\alpha = |\frac{E_{\gamma_1} - E_{\gamma_2}}{E_{\gamma_1} + E_{\gamma_2}}|$)

η signal extraction in Pb-Pb 2011

To extract the signal

- ◆ EMCal:
 - → fit with a Crystal-Ball function
 - → fit of background assumed as a straight line combined with a power law
- ◆ PCM:
 - → subtracted invariant mass distribution is integrated in a mass range around the fitted meson mass in an asymmetric window in order to include bremsstrahlung tail $(m_{\eta} 0.047 \text{ GeV}/c^2, m_{\eta} + 0.023 \text{ GeV}/c^2)$
 - → residual background is subtracted using the integral of the linear fit

PCM corrections

The raw yields are corrected for **detector acceptance** and **reconstruction efficiency**

◆ geometrical acceptance:

$$A_{\eta} = rac{ extsf{N}_{\eta,|y| < y_{ extsf{max}}} ext{ with daughters within } |\eta_{\gamma}| < 0.9}{ extsf{N}_{\eta,|y| < y_{ extsf{max}}}}$$

→ reconstruction efficiency:

$$\epsilon_{{{\sf reco}},\;\eta} = \frac{{\sf verified} \;\; {\sf N}_{\pi^0(\eta),{{\sf rec}}} \; ({\it p}_{{\sf T,\;rec}})}{{\sf N}_{\eta,|{\it y}| < y_{\sf max}} \; {\sf with \; daughters \; within} \; |\eta_{\gamma}| < 0.9({\it p}_{{\sf T,\;MC}})}$$

- ightharpoonup shape determined by the shape of conversion probability (\approx 8%) and photon reconstruction efficiency
- → decrease in efficiency from peripheral to central collisions due to smaller single particle reconstruction efficiency with larger multiplicity