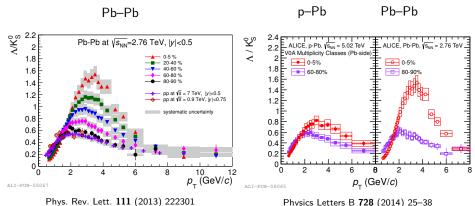
Production of strange particles in charged jets in Pb–Pb and p–Pb collisions measured with ALICE

Vít Kučera^{1,2} (for the ALICE Collaboration)

 1 NPI ASCR + Charles University in Prague, Czech Republic

 $^2 \mathsf{IPHC} + \mathsf{University}$ of Strasbourg, France

Hot Quarks 2014

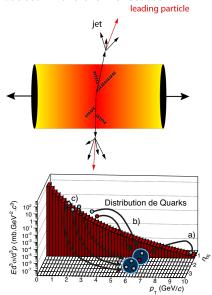


Outline

- ▶ Motivation for particle identification (PID) in jets
- ▶ Jet analysis in ALICE
- Analysis of neutral strange particles in jets
- Uncorrected spectra of strange particles in jets in Pb–Pb
- ► Correction techniques
- Sources of systematic uncertainties
- ► Corrected Λ/K_S^0 ratios in p-Pb
- Summary and outlook

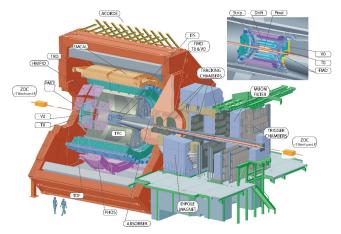
Motivation for PID in jets

- Baryon-to-meson ratio enhanced in Pb-Pb and p-Pb collisions.
- This phenomenon cannot be explained by fragmentation in vacuum.
- What is the effect of QGP on hadronisation mechanism(s) in jets?
- What mechanisms are they (parton recombination)?


Physics Letters B 728 (2014) 25-38

Motivation for PID in jets

We aim to understand the origin(s) of the Λ/K_S^0 enhancement by separating hadrons produced in jets from hadrons produced in the thermalised bulk.


Is the baryon-to-meson ratio enhanced due to the bulk effects in the plasma (parton recombination, radial flow,...) or is it (also) due to a modification of the jet fragmentation in the medium?

- jet fragmentation In a hard scattering process, a high-p_T parton is produced which fragments into hadrons.
- parton recombination Multiple partons (close to each other in phase space) cluster together to form a hadron (meson if qq, baryon if qqq).

ALICE

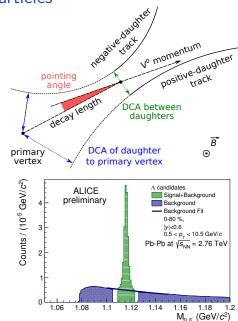
- ▶ data used in the analyses: Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV and p–Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV measured with ALICE
- tracking of charged particles by ITS & TPC in magnetic field of 0.5 T
- centrality estimated from the multiplicity of charged particles in the V0 detectors

Analysis of charged jets

- track selection
 - charged primary particles
 - $p_{\rm T}^{\rm track} > 150~{\rm MeV}/c$
 - uniform in $\varphi \times \eta$, $|\eta_{\text{track}}| < 0.9$
- raw-jet reconstruction
 - ▶ anti-k_t algorithm
 - resolution parameter R = 0.2, 0.3, (0.4)
- subtraction of average soft background
 - lacktriangle average background density ho estimated from the median $k_{
 m t}$ cluster
 - $m{p}_{\mathsf{jet},\mathsf{ch}}^{\mathsf{corr}} = m{p}_{\mathsf{jet},\mathsf{ch}}^{\mathsf{raw}}
 ho m{A}_{\mathsf{jet},\mathsf{ch}}, \qquad \mathsf{(where} \ m{A}_{\mathsf{jet},\mathsf{ch}} \ \mathsf{is} \ \mathsf{jet} \ \mathsf{area})$
- signal jet selection (good candidates for hard scattering)
 - $p_{\mathrm{T}}^{\mathrm{jet,ch}} > 5 \,\mathrm{GeV}/c$
 - $p_{\rm T}^{\rm leading\ track} > 5\ {\rm GeV}/c$
 - $A_{\text{iet.ch}} > 0.6\pi R^2$
- further $p_T^{\text{jet,ch}}$ corrections
 - background anisotropy (intra-event p_T fluctuations)
 - detector response

Analysis of neutral strange particles

Strange neutral particles decaying into two charged daughter particles

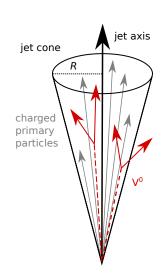

- ▶ meson $K_S^0 \rightarrow \pi^+ + \pi^-$ (BR 69 %)
- ▶ baryon $\Lambda \rightarrow p + \pi^-$ (BR 64 %)

Mother V^0 particle reconstructed using topology of its V-shaped decay.

Combinatorial background suppressed by cuts on decay parameters.
Signal yield extracted from the invariant-mass distribution.

Analysed ranges:

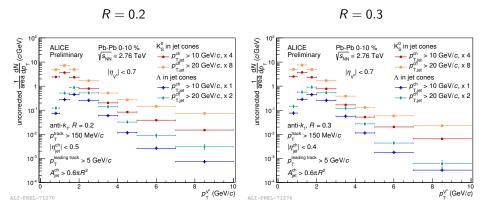
- 0.6 GeV/ $c < p_{\rm T}^{\rm V^0} < 10$ GeV/c
- $|\eta_{V^0}| < 0.7$


Strange particles in jets

Analysis steps

- V⁰ candidate selection
- candidate-jet matching (V⁰s in jet cones)

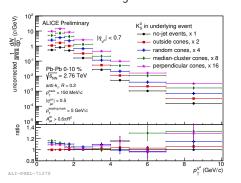
$$\begin{split} \sqrt{(\varphi_{\mathsf{V}^0} - \varphi_{\mathsf{jet,ch}})^2 + (\eta_{\mathsf{V}^0} - \eta_{\mathsf{jet,ch}})^2} < R, \\ |\eta_{\mathsf{jet,ch}}|^{\mathsf{max}} < |\eta_{\mathsf{V}^0}|^{\mathsf{max}} - R \end{split}$$

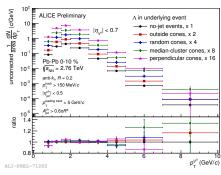

- candidate-bulk matching (regions with V⁰s from underlying event (UE) only)
- signal extraction (invariant-mass distribution)
- efficiency correction (inclusive, in jet cones, in UE)
- ► subtraction of V⁰s in UE
- ▶ subtraction of V⁰s coming from decays, i.e. "feed-down correction" (inclusive, in jets, in UE)

Uncorrected spectra of V⁰s in jet cones in Pb–Pb

Analysis performed for:

- ▶ triggered central events (0-10 %, 7.3 · 10⁶ events)
- ▶ jets in open $p_{\rm T}$ bins: $p_{\rm T}^{\rm jet,ch} > 10~{\rm GeV}/c, 20~{\rm GeV}/c$
- ▶ jets reconstructed with cone size: R = 0.2, 0.3

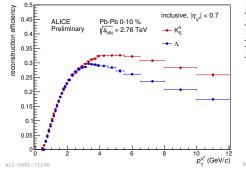


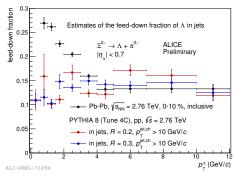

Estimation of V⁰s in the underlying event in Pb–Pb

- ▶ no-jet events: V⁰s in events with no selected jets
- outside cones: V⁰s outside jet cones
- random cones: V⁰s in a randomly oriented cone
- ▶ median-cluster cones: V^0 s in the cone of the median k_t -cluster
- ▶ perpendicular cones: V⁰s in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.

Spectra after efficiency correction agree within 5 % at intermediate $p_{\mathrm{T}}^{\mathsf{V}^0}$.

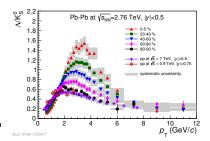


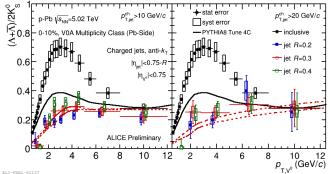

Reconstruction efficiency, feed-down in Pb-Pb

Reconstruction efficiency depends strongly on $p_{\rm T}^{\rm V^0}$, $\eta_{\rm V^0}$. Shape of the measured $\eta_{\rm V^0}$ distribution depends on the selection criteria. Efficiency of inclusive ${\rm V^0 s}$ is reweighted to get efficiency in jet cones and UE.

Feed-down fraction of Λ in jets estimated from:

- inclusive Λ (Pb–Pb-like),
- jets generated by PYTHIA 8 (pp-like).


Sources of systematic uncertainties


- choice of cuts for the selection of V⁰ candidates (cuts varied)
- choice of a method to extract signal yields (multiple settings)
- ► choice of a method to estimate V⁰s in the underlying event (multiple methods)
- estimation of material budget (taken from another analysis)
- ightharpoonup choice of a method to estimate fraction of Λ baryons from feed-down in jets (extreme scenarios)
- ightharpoonup correction of $p_{\mathrm{T}}^{\mathrm{jet}}$ (embedding of simulated jets in real data)

Corrected Λ/K_s^0 ratio in charged jets in p-Pb

 Λ/K_S^0 ratio in jets in high-multiplicity p-Pb collisions

- below the inclusive ratio in p-Pb (black circles), in pp (dark purple, right plot) and in PYTHIA (black line)
- similar to ratios in PYTHIA jets (red dashed lines)
- no significant dependence on R or $p_{T}^{\text{jet,ch}}$

Summary and outlook

- ► Pb–Pb
 - \blacktriangleright Extracted uncorrected spectra of Λ and K_S^0 in charged jets in Pb–Pb collisions.
 - Ongoing investigation of corrections and uncertainties.
 - Fully corrected Λ/K_S^0 ratio in charged jets in central Pb–Pb collisions will be reported soon.
- ▶ p-Pb
 - ALICE performed the first measurement of Λ and K_S⁰ in charged jets in p–Pb collisions at the LHC.
 - $ightharpoonup \Lambda/K_S^0$ ratio in charged jets close to the ratio in jets in PYTHIA 8.
 - ▶ No visible modification of strangeness production in charged jets in p−Pb.

Message: Λ/K_S^0 enhancement is coming from the bulk effects.

Thank you for your attention.

Backup

V^0 particle reconstruction

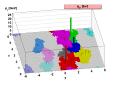
Cut variable	Value	
Daughter tracks		
TPC refit	true	
type of production vertex	not kKink	
DCA to the primary vertex	≥ 0.1 cm	
DCA between daughters	$\leq 1\sigma_{TPC}$	
$ \eta $	≤ 0.8	
$ \Delta(dE/dx) $ (p, \overline{p} : $p_{T} < 1~GeV/c$)	$\leq 3\sigma_{dE/dx}$	
V0 candidate		
reconstruction method	offline (Vít), on-the-fly (Alice)	
cosine of the pointing angle (CPA)	≥ 0.998	
radius of the decay vertex	5–100 cm	
$ \eta $	≤ 0.7	
transverse proper lifetime	$\leq 5 au$	
Armenteros–Podolanski cut (K ⁰ _S)	$p_{\mathrm{T}}^{Arm.} \geq 0.2 lpha^{Arm.} $	

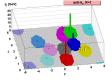
Jet algorithms

A sequential recombination jet finder is defined according to this general scheme:

1. $\forall i, j$: calculate distances d_{ij} and d_{iB} (NB $k_t \equiv p_T$):

$$d_{ij} = \min \left(k_{\mathrm{t},i}^{2p}, k_{\mathrm{t},j}^{2p} \right) \frac{\Delta_{ij}^2}{R^2}, \quad \Delta_{ij}^2 = \left(y_i - y_j \right)^2 + \left(\varphi_i - \varphi_j \right)^2, \quad d_{i\mathrm{B}} = k_{\mathrm{t},i}^{2p}$$


2. Find d_{\min} :


$$d_{\min} = \min\left(d_{ij}, d_{iB}\right).$$

- ▶ If $\exists i, j : d_{min} = d_{ij}$, merge particles i and j into a single particle and combine their momenta.
- ▶ If $\exists i : d_{min} = d_{iB}$, declare particle i to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

$$p = \left\{ \begin{array}{ll} 1 & \textit{k}_{t} \text{ (background estimation)} \\ 0 & \text{Cambridge/Aachen} \\ -1 & \text{anti-}\textit{k}_{t} \text{ (signal jets)} \end{array} \right.$$

Reweighting of the reconstruction efficiency

- $ightharpoonup \epsilon$ reconstruction efficiency of inclusive particles
- ϵ_s reconstruction efficiency of particles of interest (scaled ϵ)
- $ightharpoonup a_s$ yield of associated particles of interest
- $ightharpoonup g_s$ yield of generated particles of interest
- ▶ m uncorrected yield of measured particles (candidates) of interest
- ▶ t yield of true (corrected) particles of interest
- ▶ P signal purity

Signal extraction in JC, UE (assume that $P_{\text{inclusive}}(p_{\text{T}}^{\text{V}^0}, \eta_{\text{V}^0})$ is the same as for V⁰s of interest):

$$\textit{m}(\textit{p}_{\mathsf{T}}^{\mathsf{V}^0}, \eta_{\mathsf{V}^0}) = \textit{m}_{\mathsf{raw}}(\textit{p}_{\mathsf{T}}^{\mathsf{V}^0}, \eta_{\mathsf{V}^0})|_{\mathsf{peak \ region}} \cdot \textit{P}_{\mathsf{inclusive}}(\textit{p}_{\mathsf{T}}^{\mathsf{V}^0}, \eta_{\mathsf{V}^0})|_{\mathsf{peak \ region}}$$

Efficiency calculation:

$$\begin{split} a_s &\equiv m, \quad \sigma_{a_s} \equiv 0, \qquad g_s = a_s/\epsilon \\ \frac{1}{\epsilon_s(p_\mathsf{T}^\mathsf{V^0})} &= \frac{\sum_{\eta_{\mathsf{V}^0_i}} g_s(\eta_{\mathsf{V}^0_i}, p_\mathsf{T}^{\mathsf{V}^0})}{\sum_{\eta_{\mathsf{V}^0_i}} a_s(\eta_{\mathsf{V}^0_i}, p_\mathsf{T}^{\mathsf{V}^0})} = \sum_{\eta_{\mathsf{V}^0_i}} \frac{a_s(\eta_{\mathsf{V}^0_i}, p_\mathsf{T}^{\mathsf{V}^0})}{\sum_{\eta_{\mathsf{V}^0_i}} a_s(\eta_{\mathsf{V}^0_i}, p_\mathsf{T}^{\mathsf{V}^0})} \frac{1}{\epsilon(\eta_{\mathsf{V}^0_i}, p_\mathsf{T}^{\mathsf{V}^0})} \end{split}$$

Spectra correction:

$$t = m/\epsilon_s$$

Systematic uncertainties in p-Pb

source	uncertainty
selection cuts	2–5 % for K_S^0 , 3–6 % for Λ
signal extraction	$6~\%~(10~\%)$ for $p_{ m T}^{ m jet,ch}>10~{ m GeV}/c~(20~{ m GeV}/c)$
V ⁰ s in UE	$10 \% (2 \%)$ at low (high) $p_{\rm T}^{\rm V^0}$
$p_{\mathrm{T}}^{\mathrm{jet,ch}}$ scale	$1~\%~(10~\%)$ at low (high) $ ho_{T}^{V^0}$
feed-down	5 %