J/ψ and $\psi(2S)$ measurement in p+p collisions at $\sqrt{s} =$ 200 and 500 GeV in the STAR experiment

Barbara Trzeciak¹ for the STAR Collaboration

¹Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1, Czech Republic

E-mail: trzecbar@fjfi.cvut.cz

Abstract. In this paper, results on the J/ψ cross section and polarization measured via the dielectron decay channel at mid-rapidity in p + p collisions at $\sqrt{s} = 200$ and 500 GeV in the STAR experiment are discussed. The first measurement of $\psi(2S)$ to J/ψ ratio at $\sqrt{s} = 500$ GeV is also reported.

1. Introduction

 J/ψ and $\psi(2S)$ are bound states of charm (c) and anti-charm (\bar{c}) quarks. Charmonium physical states have to be colorless, however they can be formed via a color-singlet (CS) or color-octet (CO) intermediate $c\bar{c}$ state. One of the first models of the charmonium production, the Color Singlet Model (CSM) [1], assumed that J/ψ is created through the color-singlet state only. This early prediction failed to describe the measured charmonium cross section which has led to the development of new models. For example, Non-Relativistic QCD (NRQCD) [1] calculations were proposed in which a $c\bar{c}$ color-octet intermediate states, in addition to a color-singlet states, can bind to form charmonia.

However, the charmonium production mechanism in elementary particle collisions is not yet exactly known. For many years measurements of the J/ψ cross section have been used to test different J/ψ production models. While many models can describe relatively well the experimental data on the J/ψ cross section in p + p collisions [2–9], they have different predictions for the J/ψ polarization. Therefore, measurements of the J/ψ polarization may allow to discriminate among different models and provide new insight into the J/ψ production mechanism.

2. Charmonium measurements in STAR

In STAR, charmonia have been measured so far via the dielectron decay channel. The STAR detector [10] is a multi-purpose detector that has large acceptance at mid-rapidity, $|\eta| < 1$ with a full azimuthal coverage. Electrons can be identified using the Time Projection Chamber (TPC) [11] through ionization energy loss (dE/dx) measurement. The Time Of Flight (TOF) detector [12] greatly enhances the electron identification capability at low momenta where the dE/dx bands for electrons and hadrons cross each other. At high p_T , electron identification can be improved by the Barrel Electromagnetic Calorimeter (BEMC) [13] which measures electron energy and shower shape. The BEMC is also used to trigger on high- p_T electrons (HT trigger). Minimum Bias (MB) events are triggered by the Vertex Position Detectors (VPD) [14].

3. J/ ψ measurements in p+p at $\sqrt{s} = 200$ GeV

STAR has measured inclusive $J/\psi p_T$ spectra and polarization in p + p collisions at $\sqrt{s} = 200$ GeV via the dielectron decay channel ($B_{ee} = 5.9\%$) at mid-rapidity (|y| < 1). These results are compared to different model predictions to understand J/ψ production mechanism in elementary collisions.

Left panel of Fig. 1 shows STAR low and high- p_T measurements of $J/\psi p_T$ spectra [3, 15] compared to model predictions. The Color Evaporation Model (CEM) [16] for prompt J/ψ can describe the p_T spectrum reasonably well, except the region around $p_T \approx 3 \text{ GeV}/c$ where it overpredicts the data. NLO NRQCD calculations with color-singlet and color-octet transitions [17] for prompt J/ψ match the data for $p_T > 4 \text{ GeV}/c$. NNLO* CS model [18] for direct J/ψ production under-predicts the STAR data, but the prediction does not include contributions from $\psi(2S)$, χ_C and B-meson decays to J/ψ .

Figure 1. Left: J/ψ invariant cross section vs p_T in p+p collisions at $\sqrt{s} = 200$ GeV at midrapidity at low [15] and high p_T [3] shown as blue squares and red circles, respectively, compared to different model predictions [16–18]. Right: Polarization parameter λ_{θ} vs $J/\psi p_T$ for |y| <1 [19] compared to the PHENIX measurement [20] and two model predictions [21, 22].

In p+p collisions at $\sqrt{s} = 200$ GeV STAR has also measured J/ψ polarization parameter λ_{θ} in the helicity frame at mid-rapidity and $2 < p_T < 6$ GeV/c [19]. J/ψ polarization is analyzed via the angular distribution of the decay electrons that is described by: $\frac{d^2N}{d(\cos\theta)d\phi} \propto 1 + \lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi$, where θ and ϕ are polar and azimuthal angles, respectively; λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ are the angular decay coefficients. The p_T dependence of λ_{θ} is shown on the right panel of Fig. 1 with low- p_T PHENIX results [20] and compared to NRQCD calculations [21] and the NLO⁺ CSM prediction [22]. A trend observed in the RHIC data is towards longitudinal polarization as p_T increases and, within experimental and theoretical uncertainties, the result is consistent with the NLO⁺ CSM model.

The inclusive J/ψ production is a combination of prompt and non-prompt J/ψ . The prompt J/ψ production consists of the direct one (~60%) and feed-down from excited states $\psi(2S)(\sim 10\%)$ and $\chi_C(\sim 30\%)$, while non-prompt J/ψ originate from B-hadron decays. STAR has estimated the contribution from B-meson decays using a measurement of azimuthal angular correlation between high- $p_T J/\psi$ and charged hadrons [2, 3]. The relative contribution of B-hadron decays to inclusive J/ψ yield is strongly p_T dependent and it is 10-25% for $4 < p_T < 12 \text{ GeV}/c$, as it is shown on the left panel of Fig. 2. The measurement is consistent with the FONLL+CEM prediction [23, 24].

Figure 2. Left: relative contribution from B-meson decays to inclusive J/ψ production in p+p at $\sqrt{s} = 200$ GeV [3] compared to FONLL+CEM calculations [23,24]. Right: ratio of $\psi(2S)$ to J/ψ in p+p collisions at $\sqrt{s} = 500$ GeV from STAR (red circle) compared to results from other experiments at different energies.

4. J/ ψ and $\psi(2S)$ measurements in p+p at $\sqrt{s} = 500$ GeV

In order to further test the charmonium production mechanism and constrain the feed-down contribution from the excited states to the inclusive J/ψ production, the J/ψ and $\psi(2S)$ signals were extracted in p + p collisions at $\sqrt{s} = 500$ GeV at mid-rapidity. The $J/\psi p_T$ spectrum is shown on the left panel of Fig. 3. The STAR results at $\sqrt{s} = 500$ GeV (full circles) are compared to those at $\sqrt{s} = 200$ GeV (open circles) and with measurements of other experiments in $p+\bar{p}$ collisions at different energies. The STAR measurements cover p_T range of 4 - 20 GeV/c with a good precision. It was also observed that J/ψ cross section follows the x_T scaling: $\frac{d^2\sigma}{2\pi p_T dp_T dy} = g(x_T)/(\sqrt{s})^n$, where $x_T = 2p_T/\sqrt{s}$, with $n = 5.6 \pm 0.2$ at mid-rapidity and $p_T > 5$ GeV/c for a wide range of colliding energies [2]. At $\sqrt{s} = 500$ GeV the same x_T scaling of high- p_T J/ ψ production is seen, as shown on the right panel of Fig. 3.

Right panel of Fig. 2 shows $\psi(2S)/J/\psi$ ratio from STAR (red full circle) compared to measurements of other experiments at different colliding energies, in p + p and p+A collisions. The STAR data point is consistent with the observed trend, and no collision energy dependence of the $\psi(2S)$ to J/ψ ratio is seen with the current precision.

The statistics available at $\sqrt{s} = 500$ GeV will allow us to extract the frame invariant polarization parameter, also in different reference frames, providing model independent information about the J/ ψ polarization [25]. It will be possible to measure the azimuthal polarization parameter, λ_{ϕ} , and improve precision of the λ_{θ} measurement. Analysis of J/ ψ polarization at $\sqrt{s} = 500$ GeV is ongoing.

5. Summary

In summary, STAR has measured the inclusive J/ψ cross section and polarization in p+p collisions at $\sqrt{s} = 200$ GeV as a function of p_T . The measurements are compared to different model predictions of the J/ψ production. The p_T spectrum is described well by the NRQCD calculations while the measured polarization parameter λ_{θ} is consistent with the NLO⁺ CSM prediction. STAR new result for J/ψ at $\sqrt{s} = 500$ GeV extends p_T reach up to 20 GeV/c. The first measurement of $\psi(2S)/J/\psi$ ratio in p+p collisions at $\sqrt{s} = 500$ GeV is reported and compared with results from other experiments. No collision energy dependence is observed.

Figure 3. J/ψ invariant cross section vs p_T , left panel, and invariant cross section multiplied by $\sqrt{s}^{5.6}$ vs x_T , right panel, in p+p collisions at $\sqrt{s} = 500$ GeV at mid-rapidity shown as full circles compared to measurements at different energies.

Acknowledgements

This publication was supported by the European social fund within the framework of realizing the project "Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague", CZ.1.07/2.3.00/30.0034.

References

- [1] Braaten E, Fleming S and Yuan T C 1996 Ann. Rev. Nucl. Part. Sci. 46 197–235 (Preprint hep-ph/9602374)
- [2] Abelev B et al. (STAR Collaboration) 2009 Phys. Rev. C 80 041902 (Preprint 0904.0439)
- [3] Adamczyk L et al. (STAR Collaboration) 2013 Phys. Lett. B722 55–62 (Preprint 1208.2736)
- [4] Adare A et al. (PHENIX Collaboration) 2012 Phys. Rev. D85 092004 (Preprint 1105.1966)
- [5] Abe F et al. (CDF Collaboration) 1997 Phys. Rev. Lett. 79(4) 572–577
- [6] Acosta D et al. (CDF Collaboration) 2005 Phys. Rev. D71 032001 (Preprint hep-ex/0412071)
- [7] Aad G et al. (ATLAS Collaboration) 2011 Nucl. Phys. B850 387-444 (Preprint 1104.3038)
- [8] Khachatryan V et al. (CMS Collaboration) 2011 Eur.Phys.J. C71 1575 (Preprint 1011.4193)
- [9] Aaij R et al. (LHCb Collaboration) 2011 Eur. Phys. J. C71 1645 (Preprint 1103.0423)
- [10] Ackermann K et al. (STAR Collaboration) 2003 Nucl. Instrum. Meth. A 499 624–632
- [11] Anderson M et al. 2003 Nucl. Instrum. Meth. A 499 659-678 (Preprint nucl-ex/0301015)
- [12] Llope W J et al. 2012 Nucl. Instrum. Meth. A 661 110–113
- [13] Beddo M et al. (STAR Collaboration) 2003 Nucl. Instrum. Meth. A 499 725–739
- [14] Llope W J et al. 2004 Nucl. Instrum. Meth. A 522 252-273 (Preprint nucl-ex/0308022)
- [15] Kosarzewski L (STAR Collaboration) 2012 Acta Phys.Polon.Supp. 5 543-548
- [16] Frawley A D, Ullrich T and Vogt R 2008 Phys. Rept. 462 125–175 (Preprint 0806.1013)
- [17] Ma Y Q, Wang K and Chao K T 2011 Phys.Rev. D84 114001 (Preprint 1012.1030)
- [18] Artoisenet P et al. 2008 Phys.Rev.Lett. 101 152001 (Preprint 0806.3282)
- [19] Adamczyk L et al. (STAR Collaboration) 2013 Phys.Lett. B739 180 (Preprint 1311.1621)
- [20] Adare A et al. (PHENIX Collaboration) 2010 Phys. Rev. D 82(1) 012001
- [21] Chung H S, Yu C, Kim S and Lee J 2010 Phys. Rev. D 81(1) 014020
- [22] Lansberg J 2011 Phys. Lett. **B 695** 149–156 (Preprint 1003.4319)
- [23] Bedjidian M, Blaschke D, Bodwin G T, Carrer N, Cole B et al. 2004 (Preprint hep-ph/0311048)
- [24] Cacciari M, Nason P and Vogt R 2005 Phys.Rev.Lett. **95** 122001 (Preprint hep-ph/0502203)
- [25] Faccioli P, Lourenco C, Seixas J and Wohri H K 2010 Eur. Phys. J. C 69 657–673 (Preprint 1006.2738)