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Abstract. In this paper, results on the J/ψ cross section and polarization measured via the
dielectron decay channel at mid-rapidity in p + p collisions at

√
s = 200 and 500 GeV in the

STAR experiment are discussed. The first measurement of ψ(2S) to J/ψ ratio at
√
s = 500

GeV is also reported.

1. Introduction
J/ψ and ψ(2S) are bound states of charm (c) and anti-charm (c) quarks. Charmonium physical
states have to be colorless, however they can be formed via a color-singlet (CS) or color-octet
(CO) intermediate cc state. One of the first models of the charmonium production, the Color
Singlet Model (CSM) [1], assumed that J/ψ is created through the color-singlet state only. This
early prediction failed to describe the measured charmonium cross section which has led to the
development of new models. For example, Non-Relativistic QCD (NRQCD) [1] calculations were
proposed in which a cc color-octet intermediate states, in addition to a color-singlet states, can
bind to form charmonia.

However, the charmonium production mechanism in elementary particle collisions is not
yet exactly known. For many years measurements of the J/ψ cross section have been used
to test different J/ψ production models. While many models can describe relatively well
the experimental data on the J/ψ cross section in p + p collisions [2–9], they have different
predictions for the J/ψ polarization. Therefore, measurements of the J/ψ polarization may
allow to discriminate among different models and provide new insight into the J/ψ production
mechanism.

2. Charmonium measurements in STAR
In STAR, charmonia have been measured so far via the dielectron decay channel. The STAR
detector [10] is a multi-purpose detector that has large acceptance at mid-rapidity, |η| < 1
with a full azimuthal coverage. Electrons can be identified using the Time Projection Chamber
(TPC) [11] through ionization energy loss (dE/dx) measurement. The Time Of Flight (TOF)
detector [12] greatly enhances the electron identification capability at low momenta where the
dE/dx bands for electrons and hadrons cross each other. At high pT , electron identification can
be improved by the Barrel Electromagnetic Calorimeter (BEMC) [13] which measures electron
energy and shower shape. The BEMC is also used to trigger on high-pT electrons (HT trigger).
Minimum Bias (MB) events are triggered by the Vertex Position Detectors (VPD) [14].



3. J/ψ measurements in p+p at
√
s = 200 GeV

STAR has measured inclusive J/ψ pT spectra and polarization in p + p collisions at
√
s = 200

GeV via the dielectron decay channel (Bee = 5.9%) at mid-rapidity (|y| < 1). These results are
compared to different model predictions to understand J/ψ production mechanism in elementary
collisions.

Left panel of Fig. 1 shows STAR low and high-pT measurements of J/ψ pT spectra [3, 15]
compared to model predictions. The Color Evaporation Model (CEM) [16] for prompt J/ψ can
describe the pT spectrum reasonably well, except the region around pT ≈ 3 GeV/c where it over-
predicts the data. NLO NRQCD calculations with color-singlet and color-octet transitions [17]
for prompt J/ψ match the data for pT > 4 GeV/c. NNLO* CS model [18] for direct J/ψ
production under-predicts the STAR data, but the prediction does not include contributions
from ψ(2S), χC and B-meson decays to J/ψ.
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Figure 1. Left: J/ψ invariant cross section vs pT in p+p collisions at
√
s = 200 GeV at mid-

rapidity at low [15] and high pT [3] shown as blue squares and red circles, respectively, compared
to different model predictions [16–18]. Right: Polarization parameter λθ vs J/ψ pT for |y| <
1 [19] compared to the PHENIX measurement [20] and two model predictions [21,22].

In p+p collisions at
√
s = 200 GeV STAR has also measured J/ψ polarization parameter λθ in

the helicity frame at mid-rapidity and 2 < pT < 6 GeV/c [19]. J/ψ polarization is analyzed via

the angular distribution of the decay electrons that is described by: d2N
d(cos θ)dφ ∝ 1 + λθ cos2 θ +

λφ sin2 θ cos 2φ+λθφ sin 2θ cosφ, where θ and φ are polar and azimuthal angles, respectively; λθ,
λφ and λθφ are the angular decay coefficients. The pT dependence of λθ is shown on the right
panel of Fig. 1 with low-pT PHENIX results [20] and compared to NRQCD calculations [21] and
the NLO+ CSM prediction [22]. A trend observed in the RHIC data is towards longitudinal
polarization as pT increases and, within experimental and theoretical uncertainties, the result is
consistent with the NLO+ CSM model.

The inclusive J/ψ production is a combination of prompt and non-prompt J/ψ. The
prompt J/ψ production consists of the direct one (∼60%) and feed-down from excited states
ψ(2S)(∼10%) and χC(∼30%), while non-prompt J/ψ originate from B-hadron decays. STAR
has estimated the contribution from B-meson decays using a measurement of azimuthal angular
correlation between high-pT J/ψ and charged hadrons [2, 3]. The relative contribution of B-
hadron decays to inclusive J/ψ yield is strongly pT dependent and it is 10-25% for 4 < pT <
12 GeV/c, as it is shown on the left panel of Fig. 2. The measurement is consistent with the
FONLL+CEM prediction [23,24].
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Figure 2. Left: relative contribution from B-meson decays to inclusive J/ψ production in p+p
at
√
s = 200 GeV [3] compared to FONLL+CEM calculations [23,24]. Right: ratio of ψ(2S) to

J/ψ in p+ p collisions at
√
s = 500 GeV from STAR (red circle) compared to results from other

experiments at different energies.

4. J/ψ and ψ(2S) measurements in p+p at
√
s = 500 GeV

In order to further test the charmonium production mechanism and constrain the feed-down
contribution from the excited states to the inclusive J/ψ production, the J/ψ and ψ(2S) signals
were extracted in p + p collisions at

√
s = 500 GeV at mid-rapidity. The J/ψ pT spectrum

is shown on the left panel of Fig. 3. The STAR results at
√
s = 500 GeV (full circles) are

compared to those at
√
s = 200 GeV (open circles) and with measurements of other experiments

in p+p̄ collisions at different energies. The STAR measurements cover pT range of 4 - 20 GeV/c
with a good precision. It was also observed that J/ψ cross section follows the xT scaling:

d2σ
2πpT dpT dy

= g(xT )/(
√
s)n, where xT = 2pT /

√
s, with n = 5.6 ± 0.2 at mid-rapidity and pT >

5 GeV/c for a wide range of colliding energies [2]. At
√
s = 500 GeV the same xT scaling of

high-pT J/ψ production is seen, as shown on the right panel of Fig. 3.
Right panel of Fig. 2 shows ψ(2S)/J/ψ ratio from STAR (red full circle) compared to

measurements of other experiments at different colliding energies, in p + p and p+A collisions.
The STAR data point is consistent with the observed trend, and no collision energy dependence
of the ψ(2S) to J/ψ ratio is seen with the current precision.

The statistics available at
√
s = 500 GeV will allow us to extract the frame invariant

polarization parameter, also in different reference frames, providing model independent
information about the J/ψ polarization [25]. It will be possible to measure the azimuthal
polarization parameter, λφ, and improve precision of the λθ measurement. Analysis of J/ψ
polarization at

√
s = 500 GeV is ongoing.

5. Summary
In summary, STAR has measured the inclusive J/ψ cross section and polarization in p+p
collisions at

√
s = 200 GeV as a function of pT . The measurements are compared to different

model predictions of the J/ψ production. The pT spectrum is described well by the NRQCD
calculations while the measured polarization parameter λθ is consistent with the NLO+ CSM
prediction. STAR new result for J/ψ at

√
s = 500 GeV extends pT reach up to 20 GeV/c.

The first measurement of ψ(2S)/J/ψ ratio in p+p collisions at
√
s = 500 GeV is reported and

compared with results from other experiments. No collision energy dependence is observed.



Figure 3. J/ψ invariant cross section vs pT , left panel, and invariant cross section multiplied

by
√
s
5.6

vs xT , right panel, in p+p collisions at
√
s = 500 GeV at mid-rapidity shown as full

circles compared to measurements at different energies.
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