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Abstract. The transport coefficients of strongly interacting matter have attracted a great
interest in the field of Quark-Gluon Plasma (QGP). In this work we compute electric
conductivity σel solving numerically the Relativistic Boltzmann Transport (RBT) equation
in a uniform box with periodic boundary conditions considering 2−body scatterings. We
compare numerical results obtained using two methods, Green-Kubo correlator and E-field
method, with analytic formulas in Relaxation Time Approximation (RTA). We present results
for the realistic case of the QGP system considering both a quasi-particle model tuned to lattice
QCD thermodynamics as well as the case of a pQCD gas with a running coupling constant.
Calculations based on RTA underestimate σel of about 60%.

1. Introduction
Relativistic Heavy Ion Collisions (HICs) experiments performed by Relativistic Heavy Ion
Collider (RHIC) at BNL and by Large Hadron Collider (LHC) at CERN have reached the
same conditions of temperature and energy density as they have existed in the early universe.
A system of strongly interacting particles above the critical temperature Tc ∼ 160 MeV [1, 2] is
expected to undergo to a phase transition from hadron matter to Quark-Gluon Plasma (QGP)
[3]. The phenomenological studies by viscous hydrodynamics [4, 5, 6] and parton transport
[7, 8, 9] about the collective behaviour of such matter have shown that the QGP has a very
small shear viscosity to entropy density ratio η/s, quite close to the conjectured lower bound
for a strongly interacting system in the limit of infinite coupling η/s = 1/4π [10].

As the hot QCD matter is a plasma, another key transport coefficient, yet much less studied,
is the electric conductivity σel. This coefficient represents the linear response of the system to
an applied external electric field. HICs are expected to generate very high electric and magnetic
field (eE ≃ eB ≃ m2

π) in the very early stage of the collisions. A large value of σel would lead
to a relaxation time for electromagnetic field of the order of 1 − 2 fm/c [11, 12], which would
be of fundamental importance for the strength of the Chiral-Magnetic Effect [13]. Also in mass
asymmetric collisions, like Cu+Au, the electric field directed from Au to Cu induces currents
resulting in charge asymmetric collective flow directly related to σel [12]. Furthermore σel can be
directly related to the emission rate of soft photons [14]. Despite its relevance there is yet only a
poor theoretical and phenomenological knowledge of σel and its temperature dependece. In this
work we compute the electric conductivity σel solving numerically the Relativistic Boltzmann
Transport (RBT) equation considering two body elastic cross section.



2. Electric conductivity from the Relativistic Boltzmann Equation
The electric conductivity σel is the transport coefficient that characterizes the response of a
system to an external electric field: Ohm’s law j⃗ = σelE⃗ defines the electric conductivity in
linear response theory. The starting point of our computation is the Relativistic Boltzmann
Transport (RBT) equation that in the presence of an external field can be written as [15]:

pµ∂µf(x, p)+qFαβpβ
∂

∂pα
f(x, p) = C22(x, p) =

∫

2,1′,2′
(f1′f2′ − f1f2) |M1′2′→12|δ4(p1+p2−p′1−p′2)

(1)
where f(x, p) is the distribution function, Fαβ is the electromagnetic field strength tensor, q is
the charge. C22[f ] is the collision integral considering only 2 → 2 scatterings: M is the transition
matrix for the elastic process linked to the differential cross section |M|2 = 16πs(s−4m2)dσ/dt
with s and t the Mandelstam variables and m the mass of particles. As the Boltzmann
equation is an integro-differential equation for the function f(x, p), it is necessary to approximate
the right hand side of Eq. (1) in order to obtain an analytical solution. The most simple
scheme is the Relaxation Time Approximation (RTA) which simplifies the collision integral as

C[f ] ≃ −pµuµ

τ (f − feq) where τ is the so-called relaxation time which represents the time scale
for the system to relax toward the equilibrium state characterized by feq. Following simple
mathematical steps, one obtains the following analytical formula [16, 17]:

σel =
e2

3T

∑

j=q,q̄

q2j

∫
d3p

(2π)3
p⃗2

E2
τjfeq =

e2⋆
3T

〈
p⃗2

E2

〉

τqρq (2)

where qj is the quarks charge (±1/3,±2/3), ρq is the quark density, e2⋆ = e2
∑

j=q̄,q q
2
j = 4e2/3.

τq is the quark transport relaxation time which for a quark of species i can be written as

τ−1
tr,i =

∑
j=q,q̄,g⟨ρjv

ij
relσ

ij
tr⟩ where vrel is the relative velocity of the two scattering particles and

σij
tr is the transport cross section.
We have computed the electric conductivity σel solving numerically the RBT equation (see

Ref. [18] for details) in a box with periodic boundary conditions using two methods: Green-Kubo
correlator and E-field methods. The first one, in the framework of Linear Response Theory,
relates transport coefficients to correlation functions of the corresponding flux or tensor in
thermal equilibrium. In this approach one obtains σel =

V
T

∫∞
0 dt ⟨jz(t)jz(0)⟩ = V

T ⟨jz(0)jz(0)⟩τσel

where jz is the z component of the electric current, ⟨. . .⟩ is the thermal average at equilibrium,
i.e. without any external electric field. The second method used is suggested by the definition
itself of σel = J/E: taking the ratio between the electric current measured and the electric field
applied one obtains σel. To simulate a constant electric field E⃗ in the box, it is sufficient to
solve the following equation of motions for particles dpiz/dt = qieEz (assuming E⃗ along the z
direction).

In Fig. 1 we show the Green-Kubo correlator as a function of time for a system of massless
particles interacting via an isotropic cross-section σtot = 3 mb for different temperatures
T = 0.1 − 0.6 GeV: the behaviour of such correlators is clearly an exponential function
exp(−t/τσel). In Fig. 2 we plot x,y and z components of electric current j⃗ as a function of
time for a system of particles with m = 0.4 GeV, T = 0.2 GeV, σtot = 10 mb and an external
electric field eE = 0.05 GeV/fm along z direction: jx and jy fluctuate around zero while jz
reaches a saturation value proportional to E.

3. Electric conductivity of the QGP
In this section we consider the more realistic case of quarks, antiquarks and gluons interacting
via different anisotropic and energy dependent cross section according to the pQCD-like scheme
with a screening mass mD as arising from HTL approach: mD ∼ g(T )T . The total cross section
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Figure 1. Green-Kubo correlators as a
function of time for different temperatures for
a system of massless particles interacting via
isotropic scatterings with σtot = 3 mb.
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Figure 2. x, y and z components of electric
current j⃗ for a system of massive particles
(m = 0.4 GeV) at T = 0.2 GeV with an
applied electric field eE = 0.05 GeV/fm.
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Figure 3. Electric conductivity
σel/T as a function of T/Tc. Open
circles are Green-Kubo results for QP
model, green open squares are QP
model results computed with E-field
method, orange diamonds are pQCD
results with E-filed method; green line
and orange dot-dashed line are RTA
for the QP model and pQCD case.
Symbols are Lattice data (see text for
details).

used has the following form: σij
tot = βijσ(s) = βij πα2

s
m2

D

s
s+m2

D
where αs = g2/(4π) and βij depends

on the species of interacting particles: βqq = 16/9, βqq′ = 8/9, βqg = 2 and βgg = 9.
In order to take into account the thermodynamics from lattice QCD computations, we

employ the quasi-particle (QP) model. The aim of a QP model is to describe a strongly
interacting system in terms of weakly interacting particles whose masses are generated by the
non-perturbative effects. In this model the running coupling g(T ) can be parametrized by

g2(T ) = 48π2

(11Nc−2Nf ) ln
[
λ
(

T
Tc

−Ts
Tc

)]2 with λ = 2.6, Ts/Tc = 0.57, Tc = 0.16 GeV as in [19] similarly

to [20]. Quarks’ and gluons’ masses are given by m2
q = g2T 2/3 and m2

g = 3g2T 2/4. We
also study the behaviour of electric conductivity using the pQCD running coupling gpQCD =
8π
9 ln−1

(
2πT

ΛQCD

)
considering massless particles: even if this case does not describe the phase

transition, it is interesting to study the σel dependence on a different running coupling and also
the asymptotic limit valid for T ≫ Tc.

In Fig. 3 we show σel/T as a function of T/Tc. Open circles are computed using Green-
Kubo correlator, green squares with the E-field method (applying eE = 0.02÷ 0.05 GeV/fm to



guarantee the saturation of electric current) for the quasi particle model, orange open diamonds
represent result for the massless pQCD case computed only with the E-field method. Green
line is RTA for QP model, orange dot-dashed line is RTA for the massless pQCD case. Symbols
denotes Lattice data: grey squares [21], violet triangles [22], green circles [23], yellow diamonds
[24], red diamonds [25] and orange square [26]. Green-Kubo results are in agreement with the
E-field method. Numerical results predicted by the QP model are about a factor of 4 greater
then recent Lattice QCD calculations [25]. Calculations based on RTA underestimate σel/T for
both QP model and pQCD case of about a factor 1.7.

4. Conclusions
Transport coefficients characterize the response of a system to different kind of perturbations
and determine the dynamics of the system toward the equilibrium state through dissipation.
As the QGP created in Heavy Ions Collisions is a system far from equilibrium, the study of
transport coefficients is mandatory. In this work we have computed σel solving numerically
the RBT equation using two methods: the Electric field method, suggested by the definition
itself (J = σelE), and Green-Kubo correlator. We find that the two methods are in very good
agreement. Furthermore we find that RTA underestimates σel by about a factor of 1.7. Our
results are quite general but they have been found considering only 2 ↔ 2 collisions. It is very
interesting to have similar information also when 2 ↔ 3 collisions are included as in BAMPS
[27].
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