

Beam screen cooling: scaling from LHC to FHC

Philippe Lebrun

FHC meeting on beam pipe design, CERN 20 December 2013

The beam screen concept

G. Claudet, F. Disdier, Ph. Lebrun, M. Morpurgo, P. Weymuth, Preliminary Study of a superfluid helium cryogenic system for the Large Hadron Collider, LHC Note 26 (1985)

Rationale for beam screen temperature 1) Thermodynamics

- Exergy load ΔE = measure of (ideal) refrigeration duty $\Delta E = \Delta E_{cm} + \Delta E_{bs}$ $\Delta E = Q_{\text{cm}}$. $(T_a/T_{\text{cm}}-1) + (Q_{\text{bs}}-Q_{\text{cm}})$. $(T_a/T_{\text{bs}}-1)$
- With Q_{bs} = heat load to beam screen T_{bs} = beam screen (average) temperature Q_{cm} = residual heat load to cold mass T_{cm} = cold mass temperature (1.9 K for LHC) T_a = ambient temperature (290 K)
- Minimize total exergy load
- Estimate $Q_{cm} = f(T_{bs})$
	- Calculation: radiation + conduction along supports with contact resistance
	- Measurements on full-scale thermal models

Measured residual heat load from beam screen to cold mass

Average beam screen temperature [K]

Residual heat load model from beam screen to cold mass

Residual heat inleak from beam screen to cold mass

Total exergy loss vs beam screen temperature Parameter: beam screen heat load

- Beam vacuum lifetime dominated by nuclear scattering of protons on residual gas
- Beam vacuum lifetime of \sim 100 h required to
	- Limit decay of beam intensity
	- Reduce energy deposited by scattered protons to \sim 30 mW/m
- \Rightarrow residual gas density in the 10^{14} m⁻³ range
- \Rightarrow residual pressure in the 10⁻⁹ to 10⁻⁸ Pa range
- Cryopumping on cold bore at 1.9 K meets these requirements
- This would be sufficient in absence of beam-induced desorption

Cryopumping of beam vacuum at 1.9 K

M. Jimenez

- Beam-induced desorption of cryopumped gas molecules degrades vacuum
- \Rightarrow beam screen shelters 1.9 K cryopumping surface from proton/ion/photon induced desorption
- \Rightarrow pumping holes for desorbed molecules (4%)

Condensed gas molecules

- Avoid beam screen temperatures where vapor pressure of condensed species (H₂, H₂O, CH₄, CO, CO₂) are in the 10⁻⁷ to 10⁻⁴ Pa range: insufficient pumping speed to the cold bore at 1.9 K
- \Rightarrow allowed ranges 5 20 K, 40 60 K, 100 120 K, > 190 K

- Beam stability requires low transverse impedance
- Transverse impedance

 $Z_{\mathsf{T}}(\omega) \sim \rho \mathsf{R} / \omega \; \mathsf{b}^3$

 ρ wall electrical resistivity

R average machine radius

b half-aperture of beam pipe

- Transverse resistive-wall instability
	- dominant in large machines with small aperture
	- must be compensated by beam feedback, provided growth of instability is slow enough (~ 100 turns)
	- maximize growth time $\tau \sim 1/Z_T(\omega)$ i.e. reduce $Z_T(\omega)$
	- \Rightarrow for a large machine with small aperture, low transverse impedance is achieved through low ρ , i.e. low-temperature wall coated with $>50 \mu m$ copper (typically < 50 K for RRR=100)

- Charged particle beams bent in a magnetic field undergo centripetal acceleration and emit electromagnetic radiation
- When beams are relativistic, radiation is emitted in a narrow cone
- Median of spectrum $E_c \sim \gamma^3/R$
- Power radiated per m $P_{syn} \sim \gamma^4/R^2$

with γ = relativistic factor of beam, R = radius of curvature

Heat loads to beam screen 2) Beam image currents in the resistive wall

- Beam of charged particles $=$ electrical current
- α Image currents α are induced in the (resistive) wall of the vacuum chamber, producing ohmic dissipation
- Power per m $P_{rw} \sim N^2 \rho^{1/2}$
- with $N =$ particle bunch charge
	- $p =$ electrical resistivity of wall
- Low-resistivity
	- Copper vs stainless steel
	- Low temperature
	- Magneto-resistance
	- Eddy currents at magnet resistive transition

 ϵ => 75 µm Cu (RRR = 100) on 1 mm austenitic steel

- Photo-electrons extracted from the wall by synchrotron radiation, can be resonantly accelerated by the successive particle bunches \Rightarrow multipacting \Rightarrow buildup of electron cloud
- Energy deposition by electons hitting the wall
- Intensity of electron cloud governed by
	- photon irradiation of the wall ⇒ low reflectivity surface
	- bunch repetition rate ⇒ increase bunch spacing
	- secondary electron yield ⇒ low-SEY surface and beam "scrubbing"

Functional design map of beam screen

Design space for LHC beam screen Parameter: beam screen heat load

Beam screen heat loads [W/m per aperture]

HL-LHC: high-luminosity upgrade (14 TeV center-of mass energy, \sim *10³⁵ cm⁻².s⁻¹ luminosity)*

HE-LHC: high-energy upgrade (33 TeV center-of-mass energy, ~2.10³⁴ cm⁻².s⁻¹ luminosity)

25 ns and 50 ns refer to spacing of particle bunches

V. Baglin, Ph. Lebrun, L. Tavian, R. van Weelderen, Cryogenic beam screens for highenergy particle accelerators, Proc. ICEC24 Fukuoka, Cryogenics and Superconductivity Society of Japan (2013) 629-634

Compared parameters of hadron colliders

LHC-type beam screen for FHC Assumption $T_{cm} = 1.9 K$

Exergetic load vs beam screen temperature Ta = 290 K; LHC type beam screen

LHC-type beam screen for FHC Assumption $T_{cm} = 1.9 K$

Heat load attenuation = Q beam screen / Q cold mass Parameter: Q beam screen

Real electrical power to refrigerator P_{ref}

 $P_{ref} = \Delta E / \eta(T)$ with $\eta(T)$ = efficiency w.r. to Carnot = COP_{Carnot}/COP_{Real}

$$
P_{\rm ref} = Q_{\rm cm} \cdot (T_a/T_{\rm cm} - 1)/\eta(T_{\rm cm}) + (Q_{\rm bs} - Q_{\rm cm}) \cdot (T_a/T_{\rm bs} - 1)/\eta(T_{\rm bs})
$$

- With Q_{bs} = heat load to beam screen T_{bs} = beam screen (average) temperature Q_{cm} = residual heat load to cold mass T_{cm} = cold mass temperature (1.9 K for LHC) T_a = ambient temperature (290 K)
- Minimize total electrical power to refrigerator

 $\eta(T) = COP_{Carnot}/COP_{Real}$

$|$ COP of cryogenic helium refrigeration $|$

LHC-type beam screen for FHC Assumption $T_{cm} = 1.9 K$

Power to refrigerator vs beam screen temperature Ta = 290 K; LHC type beam screen

Cooling potential of cryogens for beam screen

Operating the beam screen at higher temperature would allow other cooling fluids

Summary

- Original motivation for LHC beam screen: thermodynamics
	- Reduce exergy load to the cryogenic system, and therefore power to refrigerator
- Also essential for
	- Ensuring good (dynamic) vacuum for circulating beams
	- Limit development of beam collective effects and instabilities
- Beam screen design space constrained by multi-physics
	- Thermodynamics
	- Electromagnetism
	- Material properties
	- Vacuum
	- Thermohydraulics
- Assume FHC has same cold mass temperature and similar beam screen as LHC
- FHC higher linear heat loads push thermodynamic optimum towards higher beam screen temperatures (\sim 80-100 K for 80 km ring): is this acceptable?
- Power to refrigerator needed to compensate for synchrotron radiation load of \sim 40 W/m per aperture for 80 km ring would be \sim 600 W/m per aperture with thermodynamically optimized beam screen, i.e. \sim 100 MW for complete FHC
- In absence of beam screen, it would be $>$ 5 GW!