Beam Pipe Meeting Introduction

D. Schulte

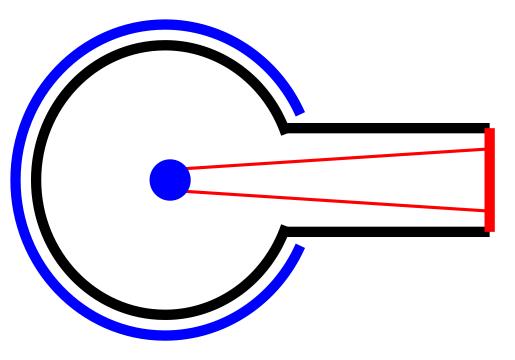
D. Schulte: Beam pipe kickoff meeting

Goal of the Meeting

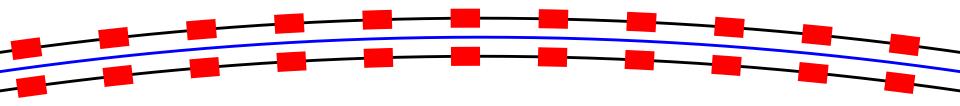
- The beam pipe area is critical for the FHC design
 - Magnet aperture is a main cost driver
 - Beam aperture is a main beam performance factor
 - Thickness of shielding gap is critical to link the two
 - Beam screen cooling is one of the main power consumption sources
- Beam pipe area design interacts with many expertises
 - Magnet design
 - Cooling and power efficiency
 - Wakefields, impact beam stability, optics and feedback
 - Electron cloud, impacts the time structure and background in the experiments
 - Vacuum design
- Need an integrated task force/working group
 - Define baseline beam aperture, magnet aperture and shielding gap
 - Develop strategies for alternative solutions
 - Later also touch field quality at injection
- This meeting should kick-start the technical discussion of this task force

Synchrotron Radiation Load

- Main difference between LHC and FHC
- Synchrotron radiation is 25 to 44 W/m per beam averaged over the arc for (15T and 20T)
 - Important to avoid heating of magnets
- Total radiation is 4.4 to 5.8 MW for both beams
 - Total cooling efficiency is critical
 - Cooling needs to be done at relatively high temperature due to Carnot inefficiency -> Philippe
- Four approaches
 - Conventional beam screen -> Philippe, Nicolas
 - Conventional beam screen with high temperature superconductor
 - Photon stops -> Nicolas
 - Open midplane magnet
 - Are there more?


Beam Screen

- Current draft baseline
 - beam aperture: 2x13mm
 - magnet aperture; 2x20mm
 - Space for shielding etc: 7mm
 - Needs to be reviewed
- Impedance effects
 - Strong dependence on radius
 - Field dependent
 - increase above approx. 20K
- Potential cures
 - Increase of aperture
 - Superconducting coating
 - Amorphous carbon coating against ecloud (Gijs De Rijk, Roberto Kersevan)



Open Midplane

- Less impact of warm surface impedance on beam
- Could also help against electron cloud
- Maybe easier to shield magnet
 - Could reduce space between beam screen and magnet
- But very difficult magnet design
 - Likely reduced field
- Similar studies for muon collider

Photon Stops

- Photon stops could take most of the heat load and be cooled at a higher temperature
- Photons travel for approx 12-21m at injection and around 14.5m at full energy (20T design)
 - For 13mm beam pipe radius 10mm radius for photon stops requires 1.8m spacing
 - Would need very short magnets or have to integrate the stops into the dipoles
 - Maybe space between beam and magnet aperture can be reduced
- Reflectivity of photons (4keV critical energy) might be OK

Conclusion

- Beam pipe design is very critical
 - Magnet cost
 - Power consumption
 - Beam stability
 - Electron cloud
- Consider four different approaches
 - All have advantages and disadvantages
 - Need to explore them to some level
 - Will require R&D
- Will form an integrated working group
 - Experts from the different fields
 - Meet regularly
 - To work out details
 - To come up with novel ideas
- Will need to find a time slot and make sure that each field can be represented

Potential Next Steps

- Define conventional solution
 - Temperature of beam screen
 - Design of screen and inner kryostat
 - Probably thickness is independent of the inner aperture
 - Can then define inner aperture from beam dynamics
- Define strategy with high temperature superconductor coating
 - Material
 - Electron cloud mitigation
 - Inner kryostat/beam screen
 - Aperture
- Define a strategy for photon stops
 - Integration of stops into dipoles
 - Required shielding gap thickness
 - Determine impedance effects
- Define strategy toward open midplane magnets
 - Is it worth exploring?. Schulte: Beam pipe kickoff meeting