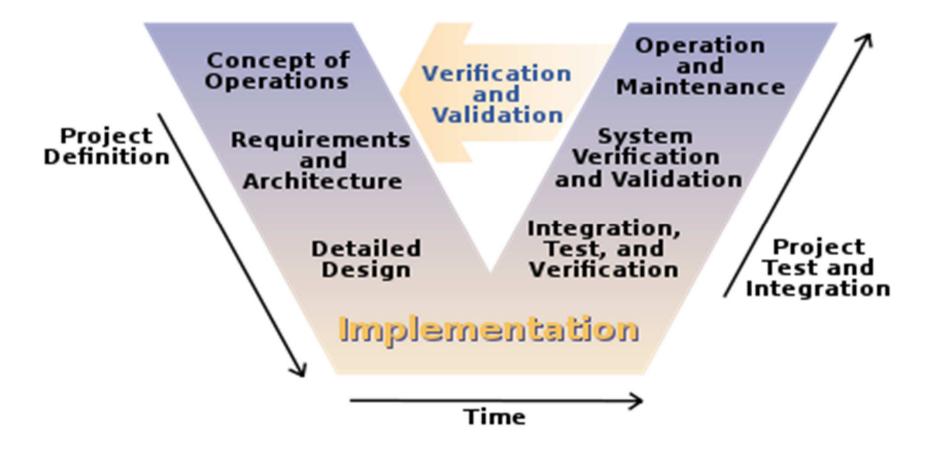


Reliability Applied to KM3NET

S.Colonges CLB meeting 30/01/2014

Who am i?

- Stéphane COLONGES
- APC Laboratory
- Electronic Product Assurance Manager
- Activities:
 - Support engineering to improve reliability
 - Components & system qualification
- Projects:
 - Auger Observatory (1830 boards in harsh environment)
 - Space projects: Taranis, SimbolX, R&D anti-coïndidence
 - CTA observatory (QAM)


Table of contents

- Development process
- Reliability for KM3net
- Reliability analysis
- My contribution
- Conclusion



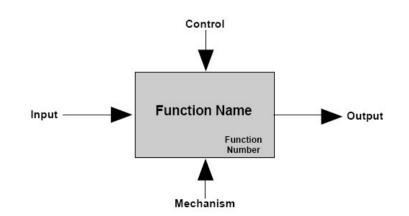
Development process

V Cycle

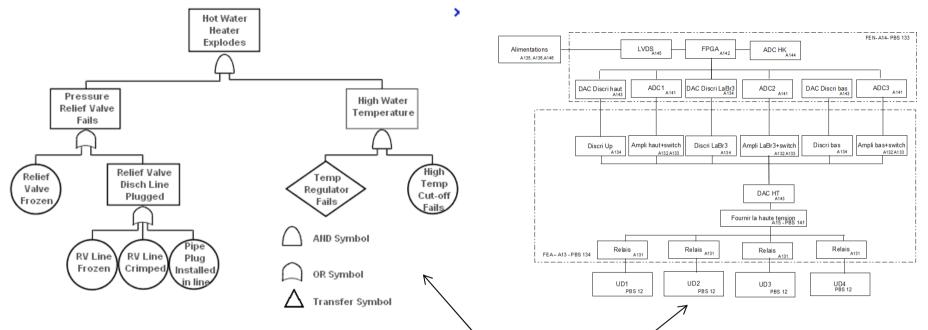
Concept of operation

Product definition (scientific needs)
Think Needs before solutions!

- Constraints (environment, life cycle, maintenance, costs...)

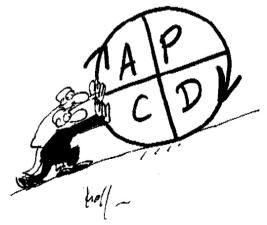

Requirements and architecture

-Requirements (functional, performances, environmental, RAMS...)


-Functional analysis (<u>SADT method</u>)

-Applicable needs

-PBS



Requirements and architecture

-FMECA (using tools like FTA and RBD) → Avoid SPF, reduce failures criticism

→ Iterative process!

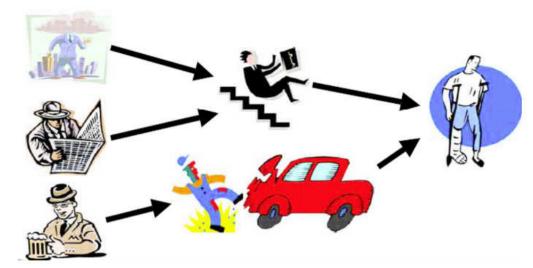
FMECA

Project:			Version:			Date:					
System:				Subsystem:			Teamwork leader:				
ld.	Comp.	Function	Failure mode	Failure cause	Local effects	Global effects	S	0	D	RPN	Corrective actions

Design

Good conception = high reliability

Parts selection, consider:


- Obsolescence (Vs LTA), maturity, wide distribution
- Environment: temperature, ESD, salt, humidity...
- MTBF (FIT)
- ROHS Vs Whiskers?

- Improve reliability (Derating - ECSS-Q-ST-30-11C, redundancies, ESD protections, ESR compromise...)

Design

Reliability analysis

- MTTF :

- Acceptable failure rate?

- Spare quantities

- FMECA (identify failure modes and reduce effects).

Iterative process:

- -Identify the weakness points
- -Identify failure type and process
- -Change the design to improve reliability

Design

Critical Design Review:

- Objectives:

-Validate the detailed product conception

-Prototype analysis and test results

-Check the product conformity with the specifications

- Documentation:

- -Definition justification document
- -Manufacturing files, procedures and documents
- -RAMS plan and FMECA (Reliability analysis) & MTBF evaluation
- -Interfaces Control Document
- -Preliminary user guide

Pre-production (Detailled design) -Goal:

-Produce a small quantity of boards, update the design to production process, design hardening

-Industrialization:

-PCB rules (IPC2221... IPC600...)

-IPC class 2

-Manufacturing and soldering processes

-Manufacturing test and inspection (In situ tests, test bench...)

- -HASS procedure (eliminate youth failures)
- -Environment protection (coating, ESD suppressor...)
- -Storage, packaging, handling...

Pre-production (Detailled design)

-Production Readiness Review:

-Manufacturing sub-contractor, public tender...(instructions, CCTP...)

-Industrial files

-Dividing in batches, allow to:

-Detect weakness point (PCB layout, production process)

-Change layout or production process (non conformities correction)

- Configuration follow up :

-Non conformities taken into account

-Modification taken into account

-Document folder: customer/sub contractor use the same files and document version

Document folder example

RÉPERTOIRE DOCUMENT

DÉSIGNATION : INDICE :

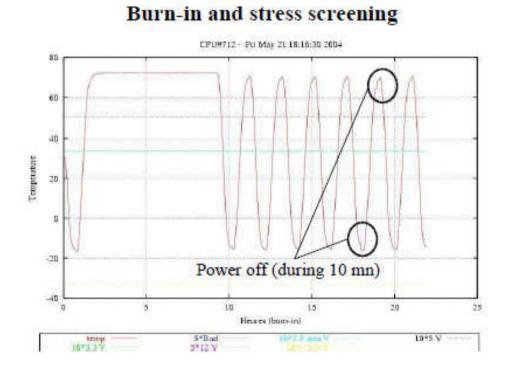
.

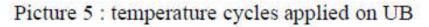
Carte AUGER - IN2P3 ("carte unifiée") K

08/10/03

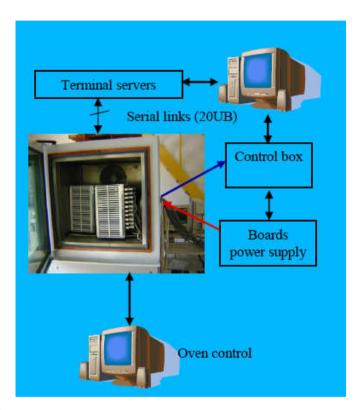
Date de mise a jour :


réf, du sous document Nombre de folios / remarques Indice Désignation du sous document NomAuger04072003 (document Excel) Nomendature carte unifiée AUGER G Nomenclature des composants Intégrée et mise a jour dans la nomendature de Rill of matérial (document, tyt) Version 1.3 ==> repères topologiques la carte unifiée AUGER (version obsolète) Instructions générales de fabrication ; en particulier, instructions de câblage, instructions Exprication Instructions (document Word) E Instructions de fabrication de la carte unifiée de trooicalisation, instructions d'emballage Instructions de programmation (documen (broW D Instructions de programmation Instructions logiciel Spécifications générales : compte rendu de la réunion Spécifications générales (réunion du energificationsenerales (document/Word) I R du 24/10/2002 24/10/2002) testfonctionnelub (document Word) C Procédure de test fonctionnel Description du test fonctionnel deverminagespecifications (documer Word) F Procédure de deverminage Description de la procédure Relatif aux fichiers de fabrication Unified Board version С Schéma électronique 14 Cette version inclue les plages de test schemaUB1V4.toz PI Dodf A Schema interne du PLD Fichiers gerbers du CI version 2.1 (Gerber étendu F Fichiers gerbers : Gerber21.tgz RS274-X) Fichiers Gerbers Incluent en particulier : 4 couches : routage Top et Bottom et plan TOP, art modifié entre indice Det E plan de routage internes SERI TOP art modifié entre indice Det E plan de sérioraphie Sérigraphie top et bottom Masque de vernis épargne VE TOP.art modifié entre indice D et E Verni épargne top et bottom Masque de refusion modifié entre versions D et E. M44 entevé car Masque de refusion pour la soudure des Masque refusion de (PASTEMASK TOP2 1 art) composants CMS ron soudé) Non modifié entre version D et E plan de percage plan d'implantation TOP et BOTTOM A Fichiers acrobat reader (topUB1V4.pdf, botUB1V4.pdf) Spécifications particulières pour le circuit R imprimé Specifications CL Spécifications pour la réalisation du circuit imprimé Fichier Fabmaster (pour test in-situ) relatif aux extract20.val.gz fichiers cerbers version 2.0 pour la fabrication в Fichier Fabmaster pour UB version 2.0 de la carte


Because of the former was the second of the


Define a common test and HASS strategy:

-Visual inspection


- -Boundary Scan, In situ test (nails), mobil probe
- -HASS or ESS with light functionnal test
- -Functionnal test \rightarrow perform in the manufactory

(from -20 to 67°C – 3°C/mn slope - burn-in 8 hours – 7 temperature cycling – 30 mn dwell time - Total duration 23 hours - 20 UB in the oven)

Auditing:

-Relation customer/supplier \rightarrow as flexible as possible -Win-Win relationship \rightarrow they have interest in science

project (pub). We want the higher quality product

- The FIDES methodology (from page 259) identifies a list of recommendations which, if followed, will facilitate construction of a product reliability. This set of recommendations has been broken down into a set of questions.
- The answers that a company gives to these questions provides:
- a measurement of its ability to make reliable products,
- a quantification of the process factors used in the calculation models,
- the possibility of identifying improvement actions.

Audit procedure

To control an audit, the auditor must:

- Identify the audit scope.
- Prepare the audit.
- Perform the audit.
- Collect proofs.
- Process the collected information.
- Draw conclusions.
- Write an audit report.
- Present the audit result.

Level	Process	$\Pi_{Process}$	Process grade	
∨ery high reliability	Process almost with no weakness	<1.7	> 75%	
High reliability	Controlled process, reliability engineering	1.7 to 2.8	50% to 75%	
Standard	Usual ISO 9001 version 2000 type quality procedures	2.8 to 4.8	25% to 50%	
Unreliable	Reliability problems not taken into account	>4.8	<25%	

Evaluate (audit) process influence with: Process.xls

. And fill Пр = 4,00

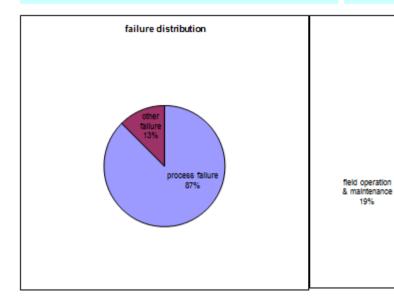
in result1_stress of FIDES Mill V2004A -2- Component.xls

process failure distribution

support 20%

system Integration 13%

specification


desi 169

equipment

production

23%

	Contributio n (of marks ot the	Mark obtained	By maz mark	Contributio n (of the theoretic	Process grade		Percentage of failures of each phase
specification	#DIV/0!	0.0	433,9	8,0%	0%	$\Pi_{\text{Specification}} = 1.18$	7,7%
design	#DIV/0!	0,0	867,7	16,0%	0%	Π _{Design} = 1,39	14,3%
equipment production	#DIV/0!	0.0	1 301,6	24,0%	0%	ILEProduction = 1,65	19,9%
system integration	#DIV/0!	0.0	650,8	12,0%	0%	$\Pi_{\text{Integration}} = 1,28$	11,2%
rield operation &	#DIV/0!	0.0	1084,7	20,0%	0%	$\prod_{\text{Field operation}} = 1.52$	17,2%
support	#DIV/0!	0.0	1084,7	20,0%	0%	II.52	17,2%
Total process ==>		0,0	******		0%	$\Pi_{Process}$ = 8,00	87,5%

 \mathbb{X}

help to define the influence of the process in term of reliability (Questions and recommandations...)

FIDES Mill V2004A - Process.xls

Audit example use Fides excel tool

. .

Installation (Integration, test and verification)

-Installation procedures:

-10% of failures = human error

-ESD and lightning protection

-Test bench (laboratory)

-Test facilities (to test systems on the site before installing lines)

Commissionning (System verification and validation)

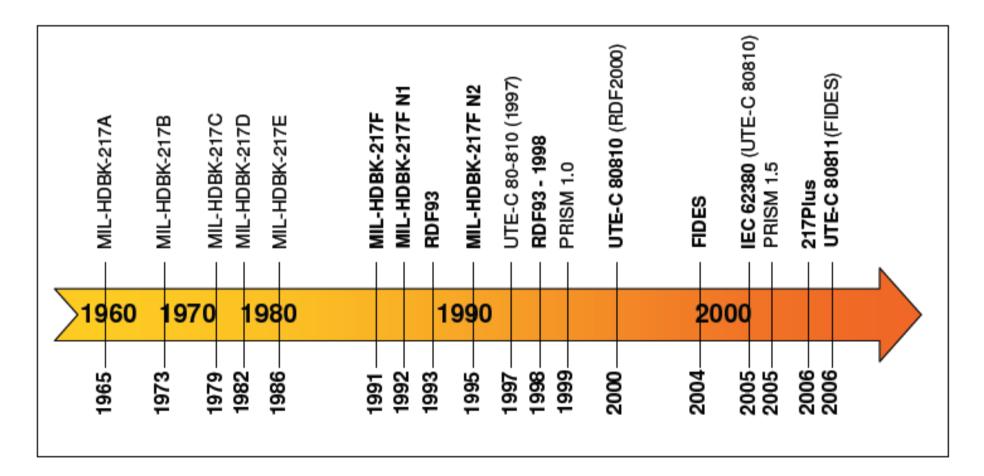
-Verify functions and performance according to requirements

-Parameters useful for failure detection correctly monitored

-Monitoring software (easy abroad parameters access)

Operation and maintenance

- Evaluate maintenance resources (spares quantities, costs, people...)
- Recovery procedures
- Update FMECA and MTTF: iterative update using experiment feedback (failures data collection)
- Database
- Record maintaining activities
- Local staff training


Reliability for KM3net How to jump on the bandwagon?

- 1) Requirements and functional analysis
- 2) MTTF analysis and FMECA
- 3) Verify design rules (Derating...)
- 4) Documentation
- 5) Review
- 6) Then next steps (pre-prod,

Production, ...)

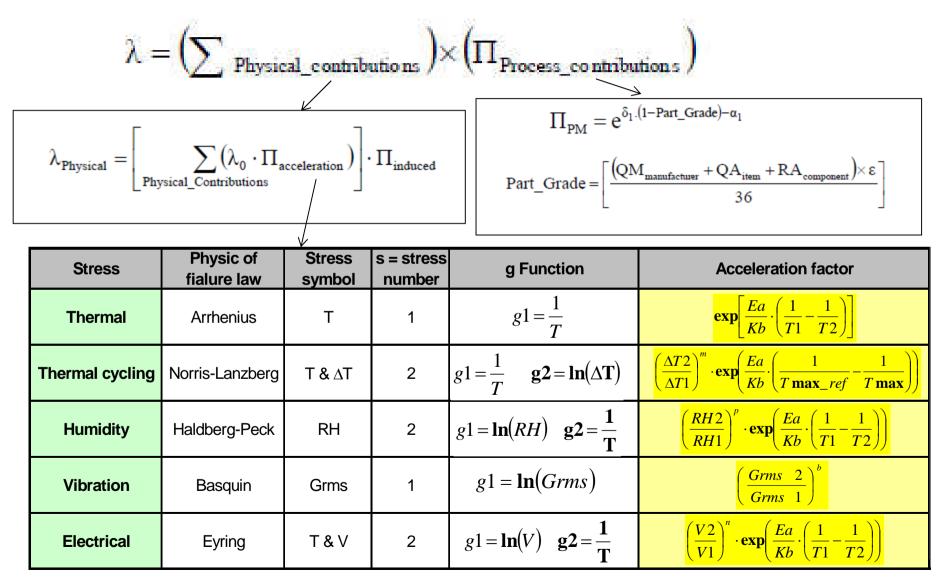
Reliability analysis - Tools

FIDES - Based on failure physics and calibrated with test • feedback and field failure data Technologies RELIABILITY Uses Process

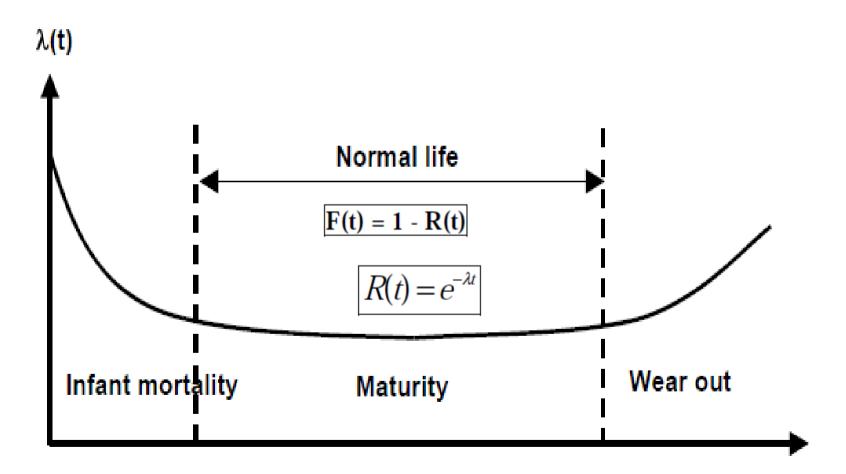
FIDES Begins

Why FIDES ?

- Reliability Data book prediction are obsolete! (don't cover actual component technologies)
 - ➔ MIL-HDBK-217 is not maintained since 1995
- FIDES → Funding in 2001 by DGA (French DoD) and 8 international companies (+ BOEING, JAXA, CNES, CNRS... interested)


Handbook and tools :

www.fides-reliability.org



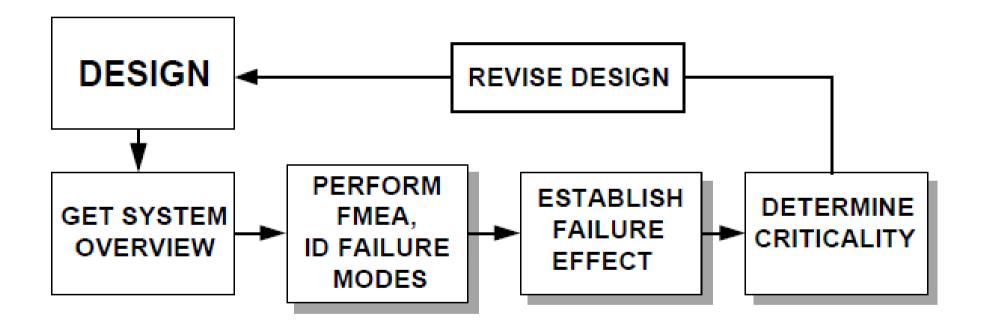
FIDES

Based on physics failure , accelerating factors and process contribution:

MTTF / Bath tub

Conclusion

- People should be aware on QA added value!
- Your collaboration is necessary
- Keep in mind: reliability is an iterative process


• • •

And 2 other words : Brainstorming and workgroups...

More slides...

FMECA An iterative process PROCEDURE-FLOWCHART

Methodology

PBS and Technical specifications

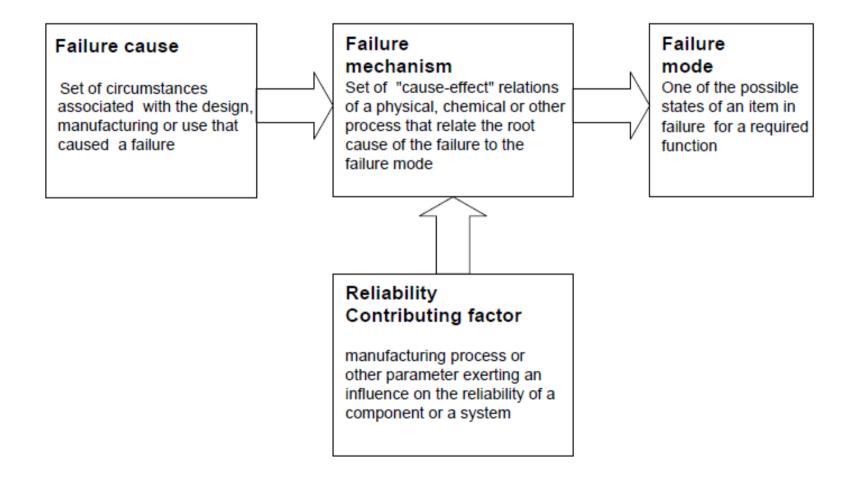
Reliability Block Diagram and/or Fault Tree Analysis

Single Point Failure identification (SPF)

FMECA :

Failure mode? Effects and criticality? Corrective actions?

Iterative Process→ Continuous improvement


Who made?

Project Team

CIL, FDIR... Criticality reevaluation

➔ The goal is to have lower criticality

Reliability analysis - Methodology

MTTF / Temperature

- Composants optiques : 0.8 eV
- Bipolar Ics, transistors, diodes : 0.7 eV
- MOS ICs : 0.6 eV
- T1: normal temperature (related to the FIT)
- T2: new temperature

$$\lambda(T_2) = \lambda(T_1) \times \exp\left[\frac{E_A}{K} \times \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

Avec la constante de Boltzman : K= 8.63 * 10^{-5} eV/K

FMECA

Identifica- tion number	Function	Failure modes	Failure effects			Failure detection	Compensating	Severit	Remarks
		and causes	Local effects	Next higher level	End effects	method	provisions	y class	
1 (no component id. available)	External power supply	Low voltage			System shut down	IGONACUT signal is active	Shut down system and charge batteries, check solar panel and solar panel controller	IV	
2	Power protection and control	No shut down when occurs a low voltage on the input, or constant shut down		Voltage too low, or no voltage	Power supply problems or no supply (fuse may fuse)	Current consumption is higher if low voltage, or no power	Check components describes for this function in table 1, and repair what is necessary to	III or IV	
21	Comparator	Bad information on the output	No detection of voltage problem	Bad trigger for the timer	See line 2	No trigger or constant trigger on the input of 22	Check M21, change if necessary	III or IV	
22	Timers	No change on the output after a trigger; Timing problem			See line 2	No shut down when low voltage occur, or repetitive shut down	Check component described in table 1	III or IV	