Jets and charged hadrons in pPb collisions with CMS

Yetkin Yilmaz (Laboratoire Leprince Ringuet, Ecole Polytechnique) *for the CMS Collaboration*

High-p_T 10, Nantes 11th September, 2014

Previously in CMS...

Dijet imbalance gives a clue about the quenching as a final state effect, however cannot let conclude on the amount of the lost energy

R_{AA} Results from PbPb Collisions

- Initial-state and final-state effects combined
- Need R_{pPb} for the interpretation of the suppression

CMS: <u>EPJC 72 (2012) 1945</u>, <u>PLB 715 (2012) 66</u>, <u>PLB 710 (2012) 256</u>, HIN-12-014, HIN-13-004, HIN-12-004, HIN-12-003

Nuclear Effects in pPb and PbPb Spectra

Challenge: pPb at a different energy than pp and pPb

Charged Particle pp Reference Spectrum

Direct Interpolation Method

- Six datasets used from 0.63 to 7 TeV
- Only the 2.76 and 7 TeV data extend beyond 30-40 GeV/c
- Technique for high- p_T interpolation: Use $x_T = 2 p_T / \sqrt{s}$
- Total uncertainty: 10%

CDF: <u>PRL 61 (1988) 1819</u>, <u>PRD 82 (2010) 119903</u> CMS: <u>JHEP 08 (2011) 086</u>, <u>EPJC 72 (2012) 1945</u>

Anti-k_T R=0.3 Jet pp Reference Spectrum

- CMS jet Spectra available for 7 TeV with R=0.5 and R=0.7
- PYTHIA Z2 correctly describes ratio of R=0.7/R=0.5, used to scale CMS results to R=0.3
- PYTHIA 72 ratio of 5.02/7 TeV used to scale CMS results to lower energy
- Systematic uncertainties taken from use of different PYTHIA tunes, shifting underlying measured spectra, changing the underlying data set used.

High-p_⊤ 10, Nantes, 2014

Total uncertainty range: 12-20%

Charged Particle Reconstruction

Reconstruction Performance

- High efficiency of ~ 70-90%
- Low misreconstruction fraction
- Momentum resolution of 1-2% at $p_T = 100 \text{ GeV/c.}$
- Spectra are not significantly distorted by momentum smearing.

CMS: HIN-12-017

Jet Reconstruction

- Anti-k_T algorithm with R=0.3 cone size applied to projections from particle-flow candidate objects
- Iterative Pileup subtraction method applied to remove background.
- Jet energies corrected to final state particle jets
- Smearing effects of the finite-p_T resolution on the spectrum are corrected using an "unfolding" procedure with MC-derived response matrix.

CMS: HIN-14-001

Trigger Combinations

Charged Particles

Yetkin Yilmaz

Anti-k_T R=0.3 Jets

High- p_T 10, Nantes, 2014

Measured pPb Spectra

Charged Particles

10

Yetkin Yilmaz

High- p_T 10, Nantes, 2014

Nuclear Modification Factor (Charged Particles)

Nuclear Modification Factor (Jets)

Comparison of R_{pPb} and R_{PbPb} Results

Charged Particles

Anti-k_T R=0.3 Jets

CMS: <u>EPJC 72 (2012) 1945</u>, HIN-12-004, HIN-12-017, HIN-14-001

Relation to x

Modification to rapidity of jets previously observed, except,

- absolute normalization not known
- limited p_T range \rightarrow Crucial for understanding the various effects

14

Forward-Backward Asymmetry

Forward-Backward Asymmetry

Charged Particles

Anti-k_T R=0.3 Jets

More: b-jets

- Dramatic energy loss for jets in PbPb collisions
- Virtually no modification seen in pPb collisions
- We observe virtually no modification as a function of jet flavor •

CMS PAS HIN-12-003	CMS PAS HIN-14-007	CMS PAS HIN-12-004	CMS PAS HIN-14-00
CMS Yetkin Yilmaz	1	7 High-p _T	10, Nantes, 2014

Conclusions

- Charged particle pPb spectrum measured to $p_T = 100 \text{ GeV/c}$
- Inclusive Jet pPb spectrum measured to $p_T > 400 \text{ GeV/c}$
- R_{pPb} of charged particles for 50 < p_T < 100 is approximately 1.38 ± 0.22
- R_{pPb} of jets for 100 < p_T < 200 is approximately 1.11 ± 0.23
- 5.02 TeV pp reference data needed to increase R_{pPb} precision!
- At high-p_T, Y_{asym} for both jets and charged hadrons is consistent with unity, at low-p_T, charged hadrons have larger yield in Pb fragmenting direction
- Need to evaluate how the new knowledge of initial-state influences the quenching interpretations in PbPb
- Charged Particle Analysis Summary: CMS-PAS-HIN-12-017
- Inclusive Jet Analysis Summary: CMS-PAS-HIN-14-001

BACKUP

Comparison to other experiments

pPb Measured Spectra

- ALICE and CMS results generally consistent within combined systematic uncertainty.
- CMS results ~5-10% higher
- Measured pPb spectra account for ~ 1/3 of the tension

ALICE: <u>arXiv:1405.2737</u> CMS: HIN-12-017

21

Artificial pp Reference Spectra

- ALICE and CMS references diverge at high-p_T
- Accounts for ~ 2/3 of the tension
- Different methods used
 - NLO-scaling (ALICE)
 - Direct Interpolation (CMS)
- Different underlying data used for ALICE and CMS

1.6

Comparison pp Data from CMS and ALICE

- 7 TeV and 2.76 TeV datasets compared
- Larger statistical uncertainty on high-p_T ALICE data

CMS: HIN-12-017

ALICE: EPJC 73 (2013) 2662

Comparison of NLO-Scaling with ALICE and CMS

- Perform NLO-Scaling on both ALICE and CMS data to 5.5 TeV and
- Compare with CMS interpolation to 5.5 TeV

NLO – F. Arleo, D. d'Enterria, A. Yoon: <u>JHEP 06 (2010) 035</u> ALICE: <u>arXiv:1405.2737</u> CMS: HIN-12-017

Yetkin Yilmaz

Yetkin Yilmaz

Yetkin Yilmaz

Nuclear PDFs

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

Forward-Backward Asymmetry

$$Y_{\rm asym}(p_{\rm T}) = \frac{\frac{d^2 N_{ch}(p_{\rm T})}{d\eta dp_{\rm T}}|_{\eta_{\rm CM} \in [-b, -a]}}{\frac{d^2 N_{ch}(p_{\rm T})}{d\eta dp_{\rm T}}|_{\eta_{\rm CM} \in [a, b]}}$$

PARTICLE YIELD LEAD GOING SIDE

PARTICLE YIELD PROTON GOING SIDE

2013 pPb Luminosity

CMS Integrated Luminosity, pPb, 2013, $\sqrt{\, {\rm s}} =$ 5.02 TeV/nucleon

Charged Particle Dataset and Definitions

- Dataset: 29 nb⁻¹ of pPb collision data at √s_{NN} = 5.02 recorded in early 2013
- Particle yields measured for "Double Sided Events"
 - Collision producing a particle with E > 3 GeV in 3 < η < 5 and similarly in -5 < η < -3.
 - 94-97% of total inelastic cross section, similar to NSD
 - Close to offline event selection and min-bias trigger
- Primary Charged Particles
 - Charged particles produced in the collision with $c\tau > 1$ cm
 - Charged decay products of any particle produced in the collision with cτ < 1 cm
 - Compatible with results of the PYTHIA generator
 - Includes strange baryons: Σ , Ξ , Ω

Particle Flow

- Using the silicon tracker (vs. HCAL) to measure charged hadrons
 - Improves resolution, avoids non-linearity
 - \circ $\,$ Decreases sensitivity to the fragmentation pattern of jets
 - Used extensively in ALEPH, CMS and proposed for the ILC

34

Iterative Pileup Subtraction

High- p_{T} 10, Nantes, 2014

ÉCOLE POLYTECHNIQUE

Jet Unfolding

Jet Triggers – Relative Shape

Particle Composition Uncertainty

- Definition of primary charged particles includes strange baryons: Σ , Ξ , Ω
- Low efficiency due to short lifetime, better efficiency at high- p_T
- EPOS model predicts large fraction of strange baryons
- Dominant uncertainty for $p_T \sim 5-10 \text{ GeV/c}$

Jet Spectrum Eta Dependence

Dijet Asymmetry Comparison

Dijet Asymmetry Comparison

Dijets shifted to p-going side, expect $Y_{asym} < 1$

Dijet Asymmetry Comparison

Dijets shifted to Pb-going side, expect $Y_{asym} > 1$

Bjorken x and p_T from PYTHIA

Charged Particles

Anti-k_T R=0.3 Jets

