Charm and prompt photon production with EPOS

B. GUIOT K. WERNER

Subatech, guiot@subatech.in2p3.fr

High-pT, 2014

Outline

- 2 Hard probes production
- 8 Results on charm and D mesons
- 4 Results on isolated photons

General presentation

Hard probes production Results on charm and D mesons Results on isolated photons

Outline

General presentation

2 Hard probes production

3 Results on charm and D mesons

4 Results on isolated photons

< ∃ >

Universal approach for pp, pA and AA collisions

- Quantum mechanical multiple scattering approach based on pQCD and Gribov-Regge theory
- Saturation scale $Q_s \propto N_{part} \hat{s}^{\lambda}$ for non-linear effects
- Core-corona approach to separate fluid and jet hadrons
- 3+1 D viscous Hydrodynamical evolution done event by event
- True particle production (not only inclusive spectrum)

EPOS3 : arXiv:1312.1233, K. Werner, B. Guiot, Y. Karpenko, T. Pierog, M. Bleicher

EPOS : a "real" event generator

1 LHC event = 1 EPOS event

- I All kind of particles produced and registered in tables
- We can (and have to) apply to these particles the same treatment as in experiments
 - \Rightarrow anti-kt for jets, background subtraction ...
 - Can reproduce exclusive observables
- \Rightarrow Ideal for comparisons with experiments

Multiple scattering in EPOS

• Phenomenological treatment of multiple scattering based on Gribov-Regge theory

Cut pomerons important for hard probes...

Cut pomeron \rightarrow particle production :

- Multiplicity ∝ # of cut pomerons
- # hard probes \propto # of cut pomerons

 \Rightarrow Linear rise of hard probes with multiplicity

B. GUIOT, K. WERNER Charm and prompt photon production with EPOS

... and collective behavior

Cut pomerons provide initial conditions for hydro

- Cut pomeron \Rightarrow several color flux tubes
- Color flux tube : Mainly a longitudinal object
- High density of color flux tubes (in red)
 = core . Hydrodynamical evolution (hadronization : Cooper-Frye)
- Flux tubes in green = corona . Jet hadrons (hadronization : string fragmentation)

Ridge and v2 in pPb collisions

< 口 > < 同

▶ < ∃ ▶</p>

Outline

- 3 Results on charm and D mesons
- 4 Results on isolated photons

< ∃ >

Interests and goals of hard probes implementation

Study of the QGP :

- Heavy quarks correlations
- Isolated photon/ charged particles correlations
 →modification of fragmentation functions by the medium

γ jet

Small x study (includes cold matter effects):

- Multiple scattering
- Gluon distribution
- Test of "basic QCD" :
 - partonic cascades
 - QCD cross sections

• □ ▶ • • □ ▶ • • □ ▶

First : comparison with data \Rightarrow test for hard probes implementation

Hard probes production

saturation scale : $Q_s \propto N_{part} \hat{s}^{\lambda}$

 The same formalism (and parameters) for prompt photons and heavy quarks

.. and timelike cascade \otimes fragmentation

ISR and out born particles have $Q^2 \neq 0 \Rightarrow$ timelike cascade

timelike cascade = resummation of collinear divergences

• Emissions at small angle $dP(z, Q^2) \propto \frac{\alpha}{2\pi} \frac{p(z)}{Q^2} \Delta(Q_0^2, Q^2) +$ angular ordering

Remarks on timelike cascade

- Particles produced in the timelike cascade have a small pt
- Small pt charms produced mainly in timelike cascade ⇒ precise test (light flavors can be produced in the medium or in string fragmention)
- Splittings done at small angle \Rightarrow peak at $\Delta \phi = 0$ for heavy quarks correlations

Outline

- 2 Hard probes production
- 8 Results on charm and D mesons
- 4 Results on isolated photons

< ∃ >

Basic test : charm distribution in EPOS vs NLO and FONLL

During all the work on charms and photons, no parameter has been changed or added

Satisfying result but not enough charms at low pt \Rightarrow timelike cascade (work in progress)

- In agreement with FONLL
- Not enough D^{+*} at low pt

Ref : Alice collaboration 2012, arXiv 1312.1233

D0 and D+ mesons

- Good agreement with FONLL
- Not enough D mesons at low pt

Outline

2 Hard probes production

3 Results on charm and D mesons

Photons and experiments

Some definitions (in pp collisions)

- Direct photon : produced during the born process
- Fragmentation photon : produced in spacelike/timelike cascade
- Prompt photon = fragmentation + direct photons
- Direct photon/charged particles correlations : provides an (approximate) measurement of quark fragmentation functions
 - Could be used for the study of the QGP

 \Rightarrow Need to separate contributions from direct and fragmentation photons

(日) (同) (三) (三)

Isolated photons

- **(**) Define a cone $R=\sqrt{\Delta\phi^2+\Delta\eta^2}$ around the photon
- 3 Isolated if $\sum p_t < E_t^{MAX}$, p_t : transverse momentum of particles in the cone (or $p_t < E_t^{MAX}$)

 \rightarrow Strong suppression of fragmentation photons (plot : Jetphox)

plot from Lucile Ronflette, subatech, during her Master2

• □ • • □ • • □ • • • □ • •

Implementation of isolated photons

• Isolation subroutine : like in experiments, we define a cone $R=\sqrt{\Delta\phi^2+\Delta\eta^2}$ around a triggered photon

Event generator with a true particle production :

- \Rightarrow realistic isolation
- \Rightarrow Able to reproduce sophisticated observables like isolated photon/charged particles correlations

Isolated photons distribution

• Work in progress

For more clarity, Jetphox results have been shifted of 0.5 to the right

B. GUIOT, K. WERNER Charm and prompt photon production with EPOS

Isolated photon/charged particle correlation : ALICE

Aim :

- $x_E = -\frac{p_t asso}{p_t^{trig}} \cos(\Delta \phi)$. x_E distribution \simeq quark fragmentation function
- Comparison of *x_E* distribution for pp and PbPb collisions

Measurement :

Isolation :	Additional criteria :
R = 0.4 No particle with $p_t > 0.5$ GeV	$p_t^{trig} \in [10, 25]$ + highest p_t of the event $p_t^{asso} > 0.2$ GeV
B. GUIOT. K. WER	NER Charm and prompt photon production with EPOS

X_E Alice

• Underlying event regions : $\Delta \phi \in [\pi/3, 2\pi/3]$ and $\Delta \phi \in [4\pi/3, 5\pi/3]$

Azimuthal correlations

- "Anti-correlation" reproduced : less particles around the isolated photon
- The two plots are comparable

(ref: thesis, N. Arbor, 2013)

B. GUIOT, K. WERNER Charm and prompt photon production with EPOS

Photon/charged particles correlations : Phenix

• Done for $p_t^{trig} =$ [7,9] , [9,12] and [12, 15] \Rightarrow good agreement

Xe Phenix

э

Summary

- In EPOS, multiple scattering is a central mechanism
- Good results for D mesons, except at low pt
 ⇒ The partonic cascade need to be improved
- Good results for isolated photons : More detailed studies could be done
- Outlook :
 - Implementation of new particles : bottom, (J/ ψ ?)
 - Heavy quarks correlations (work in progress)
 - Precise comparison with Jetphox (for fragmentation photons)

acknowledgment : projet together, Region des pays de la Loire

イロト イポト イヨト イヨト