THE PHYSICS OF PARTON-MEDIUM INTERACTION

— an assessment of the current knowledge of jet quenching

Thorsten Renk

JET BUILDING BLOCKS JETS IN MEDIUM PATHLENGTH AND COHERENCE MEDIUM DOFS BREAKING OF FF SELF-SIMILARITY OBSERVABLES AND CONSTRAINTS CONCLUSIONS

BASICS OF JET PHYSICS

• factorized QCD allows us to compute the hard process given the PDFs

$$d\sigma^{NN \to h+X} = \sum_{fijk} f_{i/N}(x_1, Q^2) \otimes f_{j/N}(x_2, Q^2) \otimes \hat{\sigma}_{ij \to f+k}$$

• this yields highly virtual final state parton which branch into a parton shower \rightarrow QCD radiation, described by iterated sequence of $1 \rightarrow 2$ splittings

Radiation requires:

- charge (i.e. a vertex, coupling to color)
- open phase space
- no cancellation by interference

• 1 \rightarrow 2 vertices give (approx.) the splitting functions (where $E_a = zE_b + (1-z)E_c$)

$$P_{q \to qg}(z) = \frac{41 + z^2}{31 - z} \quad P_{g \to gg}(z) = 3 \frac{(1 - z(1 - z))^2}{z(1 - z)} \quad P_{g \to q\overline{q}}(z) = \frac{N_F}{2} (z^2 + (1 - z)^2)$$

 \Rightarrow depend on z only — **self-similarity** of FFs

THE PHASE SPACE

- the initial parton has a virtuality $Q_i \sim p_T$, this makes the phase space \rightarrow this quantity is invariant and equals (for perfect reconstruction) the jet mass M_{jet}
- each branching equals the decay of a heavy resonance into two lighter ones \rightarrow here $M_i = \sqrt{m_i^2 + Q_i^2}$ with m_i the bare parton masses

• difference between M_1 and $M_2 + M_3 \rightarrow$ transverse momentum separation \rightarrow remember, M_{jet} is invariant!

Translation: MLLA people rather discuss in terms of jet opening angle $\theta \approx Q/E$. This is the 'natural' radius containing the energy of a jet with given M_{jet}

The Phase Space

• branchings happen throughout open phase space in z (here $t=\ln(Q^2/\Lambda_{QCD}^2)$)

$$I_{a \to bc}(t) = \int_{z_{-}(t)}^{z_{+}(t)} dz \frac{\alpha_s}{2\pi} P_{a \to bc}(z).$$

• kinematic limits z_{\pm} do **not** depend on z only — breaking of self-similarity

$$z_{\pm} = \frac{1}{2} \left(1 + \frac{M_b^2 - M_c^2}{M_a^2} \pm \frac{|\mathbf{p}_a|}{E_a} \sqrt{(M_a^2 - M_b^2 - M_c^2)^2 - 4M_b^2 M_c^2} \right)$$

• branchings can lead to any allowed M_b, M_c , need to be integrated over

$$\frac{dP_a}{dt_m} = \left[\sum_{b,c} I_{a\to bc}(t_m)\right] \exp\left[-\int_{t_{in}}^{t_m} dt' \sum_{b,c} I_{a\to bc}(t')\right]$$

• One experimental signature: hard fragmentation for c and b quarks \Rightarrow 'dead cone effect' — phase space reduction when m_i is large

THE SPACETIME PICTURE

• Heisenberg helps

pQCD interactions involve intermediate, highly virtual partons at scale ${\boldsymbol Q}$

- \rightarrow these have lifetimes 1/Q
- \rightarrow with boost factor E/Q , we get $\tau_{av}\sim E/Q^2$

- no exact localization, probability density, but functional form depends on small print $P(\tau) \sim \exp[-\tau/\tau_{av}]$ (YaJEM) or $P(\tau) \sim \exp[-(\tau/\tau_{av})^2]$ (Gaussian wave packets) \rightarrow no big difference in practice
- this allows to assign a spacetime history branching by branching in a MC code

Translation: Antenna people like to discuss this in terms of spatial resolution scale. After the time τ , the spatial size of an antenna with opening angle θ is $d \sim \tau \theta \sim E/Q^2 \cdot Q/E = 1/Q$, i.e. parton virtualities set the transverse spatial resolution on average, but the Heisenberg principle smears it probabilistically.

ANGULAR ORDERING

• Since $Q_a \gg Q_b, Q_c$, transverse separation of daughters decreases each generation \rightarrow virtuality-ordered showers are on average angular ordered

• The antenna interference pattern effectively requires exact angular ordering \rightarrow What does this do?

 \Rightarrow it cuts very soft gluon emission ($\xi = \log(1/x)$ with $x = E_{part}/E_{jet}$)

ANGULAR ORDERING — THE UNTOLD STORY

• However, if you leave MLLA where all is gluons and introduce hadron masses \rightarrow a different picture emerges

 \Rightarrow cuts the same region, angular ordering makes no real difference below 100 GeV

- for A-A relevant jet radii, difference is even smaller
- \rightarrow finding biases reduce this even further
- \Rightarrow full effect of completely breaking angular ordering is $\sim 15\%$ in relevant kinematics

Intereference is not a leading effect!

THE ROLE OF THE MEDIUM — BASIC EXPECTATIONS

Assume all this happens in a thermal QCD medium, and jet and medium interact

- \bullet in the limit $t \to \infty,$ the jet will thermalize and isotropize
- \rightarrow jet is high p_T and tightly collimated
- \rightarrow medium is at scale T and isotropic
- \Rightarrow broadening and softening of jet constituents proportional to interaction time

Corollary: Qualitative broadening of jets isn't a signature of anything in particular.

• jet P_T at LHC are O(100) GeV, medium temperature is O(0.5) GeV \rightarrow scale separation, the medium can not kinematically deflect a jet (if you calculate it, the possible angle is about 0.17 deg)

Corollary: Jet axis, subjet structure etc. are set by hard physics even in medium.

• this means the jet partons have to lose energy on average \rightarrow jet partons with $p_T \sim T$ get soaked up by the medium

THE ROLE OF THE MEDIUM

Two basic mechanisms (cartoon warning!):

• energy is carried by interactions from jet partons into medium dof, $\hat{e} = dE/dx$ \rightarrow diagrammatically $2 \rightarrow 2$ graphs where medium parton takes recoil

• interactions increase radiation phase space, $\hat{q} = dQ^2/dx$ \rightarrow medium-induced radiation, e.g. $2 \rightarrow 3$ graphs

Example: medium-induced gluon radiation, multiple soft scattering limit

- \rightarrow gluon decoheres with a certain p_T separation once $\Delta Q^2 \sim p_T^2$
- \rightarrow the formation time for this is $\tau \sim L \sim E/\Delta Q^2$
- \rightarrow during this time, the gluon picks up the phase space $\Delta Q^2 = \hat{q} L$
- \rightarrow solving for the typically emitted gluon energy yields $E = \hat{q}L^2$, LPM interference
- different for direct (incoherent) energy loss, which typically has $\Delta E \sim L$

radiative vs. elastic = coherent vs. incoherent pathlength dependence is the key

VIRTUALITY EVOLUTION OF LEADING PARTON

• virtuality evolution (cartoon) of leading parton in popular models $\rightarrow Q_i = M_{jet}$ is invariant, but virtuality of every single shower parton drops rapidly

• many models do not get the time-ordering of virtuality evolution right \rightarrow e.g. eloss models compute ΔE for on-shell parton, then vacuum fragmentation

Does this matter?

KINEMATICAL ROBUSTNESS AND THERMALIZATION

Note that Q^2 can initially be O(hard scale), but ΔQ^2 is O(few T):

• for $Q^2 \gg \Delta Q^2$, the parton is **kinematically robust**, medium effect is small \rightarrow jet evolution as in vacuum

Translation: Antenna people argue that if the medium resolution scale $d_{med} = 1/\Delta Q \gg d_{jet} = 1/Q$, the jet is not resolved by the medium and evolves as in vacuum. The condition implies $\Delta Q^2 \ll Q^2$ as above, the physics is the same.

• for $Q^2 \sim \Delta Q^2$, phase space modifications are large (but phase space isn't tagged!) \rightarrow emission by emission, medium and vacuum radiation **cannot be distinguished**

• for $Q^2 \ll \Delta Q^2$ and $E^2 \ll \Delta Q^2$, strong parton deflection in branching \rightarrow these partons **thermalize rapidly**, applicability of 'jet' formalism questionable

Corollary: Any soft gluon in medium is rapidly scattered to large angles. There is no need for an explanation for this, basic kinematics expects this (unless the medium is modelled in a way that it exchanges no momentum with the jet).

KINEMATICAL ROBUSTNESS AND THERMALIZATION

It does matter (a lot) whether you apply a ΔQ^2 to an on-shell parton or a parton with a high Q^2 . On-shell partons are never kinematically robust.

 \rightarrow repeating gluon emission in multiple soft limit, we get now $E = Q^2 L + \hat{q} L^2$ \Rightarrow very different pathlength dependence

Question: But can't we get the essentials right without getting the phase space precisely?

Answer: In eloss calculations, phase space needs to be cut 'by hand'. This leads to a factor 3 uncertainty in the quenching power of the medium.

W. A. Horowitz and B. A. Cole, Phys. Rev. C 81 (2010) 024909

There is no evidence known to me that we can get a good answer without computing the phase space accurately.

LPM EFFECT IN PRACTICE

• What do MC codes with exact kinematics make of the LPM effect?

 \rightarrow not much — L^2 dependence can be seen, but doesn't dominate the dynamics \Rightarrow any coherence seen in the data must come from somewhere else

Let's summarize this:

- Phase space matters (a lot), hence virtuality evolution is important
- \rightarrow phase space has been demonstrated to make factors three difference
- \rightarrow virtuality evolution qualitatively modifies pahtlength dependence
- Once phase space is modeled, interference (LPM and AO) is a correction \rightarrow by throwing phase space out, both LPM and AO can seem more important
- Nature does not tag vacuum from medium-induced radiation in an obvious way \rightarrow so perhaps models shouldn't either?
- \bullet non-deflection of jets by medium is a consequence of scale separation \rightarrow any reasonable model should predict this
- energy flow to large angles requires only simple kinematics
- \rightarrow any model which allows momentum flow between jet and medium gets this

Lots of in-medium jet properties are driven by simple physics.

 \rightarrow There's more than one way to talk about the same physics.

Methodology

Idea: Observables are theoretical quantities, seen through specific biases

 \Rightarrow I will in the following assume that we understand the biases and focus on physics T. R., Phys. Rev. C **88** (2013) 5, 054902

• focus on dihadron correlations — pathlength dependence via geometry bias

- eloss doesn't describe this
- data **require** coherence badly
- \rightarrow incoherent only is factor 2-3 wrong
- \rightarrow 50% incoherent is still way above
- LPM effect doesn't do this
- \rightarrow then what does?

• A. Majumder: Q^2 evolution in medium is affected by medium size:

 \Rightarrow since $\tau \sim E/Q^2$, if we have only the length L there is a lower virtuality $\rightarrow Q_{min} = \sqrt{E/L}$

- in a long medium, the shower can evolve down to lower Q^2 than in a short medium $\to \Delta Q^2 \sim Q^2$ much more likely to be reached
- \Rightarrow strongly non-linear response to pathlength, requires virtuality evolution
- at the same time, high E jets largely evolve outside the medium \rightarrow predicts an increase of R_{AA} with P_T

A. Majumder, 0901.4516 [nucl-th], T. R., Phys. Rev. C 83 (2011) 024908

• pre-LHC calculation: increase in $R_{AA}(p_T)$, fixes in-plane vs. out of plane

(I thought that's a cheap trick by Abhijit, and expected this to be ruled out due to the strong rise of R_{AA} predicted for LHC basically on day one. LHC data quickly convinced me otherwise.)

• note that YaJEM (fixed Q_0) has the LPM interference implemented \rightarrow it just doesn't do much for pathlength

T. Renk, Phys. Rev. C 83 (2011) 024908

- this **drives** the rise with P_T
- \rightarrow changing spectral slope then leads to flattening
- \rightarrow postdiction of the data captures most of the details

• It's the $Q_0 \sim \sqrt{E/L}$ coherence which drives pathlength dependence! \rightarrow interplay between E and L, should **predict** P_T dependence for v_2 \Rightarrow as it does remarkably well

T. R., H. Holopainen, R. Paatelainen and K. J. Eskola, Phys. Rev. C 84 (2011) 014906, T. R., Phys. Rev. C 88 (2013) 1, 014905

THE ROLE OF THE ELASTIC CHANNEL

Question: What about the elastic channel?

- \bullet If one makes a model of pQCD scatterings on a thermal gas of quarks and gluons
- ightarrow then many calculations show that a modest $lpha_s$ already gets \sim 50% energy loss
- S. Wicks et al. Nucl. Phys. A 784 (2007) 426J; Auvinen et al., Phys. Rev. C 82 (2010) 024906, . . .
- and **inevitably** pathlength gets wrong by factors 3 and more

- We don't have to accept the conditional though
- \Rightarrow medium DOFs take a surprisingly small amount of recoil \rightarrow in YaJEM, just about 10% gives the best description of data

Reveals something fundamental about the medium DOFs probed by a jet!

J. Auvinen, K. J. Eskola, H. Holopainen and T. R., Phys. Rev. C 82 (2010) 051901; T. Renk, Phys. Rev. C 76 (2007) 064905

FF SELF-SIMILARITY AND ITS BREAKING

- focus on jet-h correlations
- \rightarrow very differential picture of the away side induced radiation

- high P_T^{assoc} : yield reduction
- \rightarrow jet quenching, energy loss
- low P_T^{assoc} : widening and yield increase \rightarrow induced radiation
- crossing point from decrease to increase
- \rightarrow independent of trigger jet P_T
- \Rightarrow self-similarity broken

FF SELF-SIMILARITY AND ITS BREAKING

• more differential characterization — balance function and Gaussian width

- for $E^2, Q^2 \gg \Delta Q^2, m_q$, jet evolves like in vacuum, self-similar evolution
- once $Q^2 \sim \Delta Q^2$, phase space is modified, self-similarity breaks $\rightarrow \Delta Q^2$ is a function of the medium only, not of jet E \rightarrow assuming $Q/E \sim \theta$ the same between parents and daughters (in reality decreasing) $\rightarrow E \sim Q/\theta$ allows to relate that scale to a fixed energy (in reality increasing) \Rightarrow phase space for perturbatively tractable transverse radiation opens
- but at $E^2 \ll \Delta Q^2$, partons become thermalized (and no longer tractable)

Subleading radiation can be accounted for by phase space

BRINGING IT TOGETHER

Ingredients for understanding jet quenching:

- \bullet detailed accounting for medium-induced radiation phase space ΔQ^2
- \rightarrow combined with kinematical robustness arguments and scale comparisons
- leading hadron suppression pathlength dependence driven by $Q_{min} \sim \sqrt{E/L}$ \rightarrow once there is Q^2 evolution, LPM effect is small
- incoherent channels are small in the data \rightarrow small $\Delta E,$ has implications for the nature of medium
- effect of AO (and its possible breaking) small \rightarrow also no strong change of hadronization mechanism
- subleading radiation pattern again by phase space and robustness
- \rightarrow thermalization and hydro transport at even lower momenta is bulk physics
- biases! kinematic, parton type, geometry and jet finding bias

reconstructed jet = leading parton + radiation + finding bias?

 \rightarrow if so, jet observables should just come out

• jet R_{AA} comes out reasonably (no attempt at simultaneous tuning to hadron R_{AA})

- flatter than hadron R_{AA}
- \rightarrow jet definitions are designed to suppress scale evolution physics
- ALICE P_T dependence is largely driven by 5 GeV track requirement

T. R., Phys. Rev. C 88 (2013) 1, 014905

• qualitative agreement with CMS/ATLAS FF analysis and rapidity dependence \rightarrow precise experimental cuts have not been computed yet

- FF analysis result is heavily influenced by jet finding bias
- y dependence is a combination of parton type bias and changing spectral slope \rightarrow flat in the region accessible by ATLAS
- \Rightarrow proves the different coupling of quarks and gluons to the medium

The quark/gluon mixture matters! No generic parton jets!

• heavy-quarks — the dead cone effect should emerge naturally from phase space

- \rightarrow as it does where the c-shower has a virtuality evolution in-medium
- similar magnitude of R_{AA} of charged hadrons and D mesons \rightarrow consequence of different parton spectral slopes and FFs

If you know a prior distribution to be different, measuring the same posterior isn't a sign of the same physics. It's a sign of different physics.

T. R., Phys. Rev. C 89 (2014) 054906; M. Djordjevic and M. Djordjevic, 1407.3670 [nucl-th].

OBSERVABLES

physics	status	observables
coherence in leading parton eloss	constrained	STAR h-h correlations
small incoherent contribution	constrained	STAR h-h correlations
E-dependent pathlength dep.	constrained	CMS v_2
perturbative radiation spectrum	constrained	STAR jet-h correlations
energy loss into medium, hydro response	observed	CMS jet-h correlations
parton color charge dependence	constrained	ALTAS $R_{AA}(y)$, STAR h-h
phase space restrictions by mass	constrained	ALICE D-meson R_{AA}
breakdown of AO	conjectured	<u> </u>
jet mass dependence of MMFF	conjectured	
crossing point evolution	conjectured	<u> </u>
near T_C enhancement	conjectured	—
changes in hadronization	not seen	ALICE hadrochemistry in jets
fractional energy loss	not seen	STAR jet-h, ATLAS/CMS FF
medium as parton gas	not seen	STAR/CMS/ATLAS v_2 , h-h

Constraining models as an experimental motivation should no longer be enough. Experimentalists have done their job marvelously and we know how jet quenching works. Time to discuss new questions?

NEW FRONTIERS

Precision — extraction of transport coefficients, observation of small effects:

- inherent limitations: MC needs cutoffs, analytical computations need approximations \rightarrow MC@NLO in heavy-ion collisions? Some people are trying this.
- \rightarrow then, experimental small-print really matters for theory
- philosophy: do we accept hydro as constrained by bulk, or do we constrain it? \rightarrow do we trust high P_T or bulk modelling more?

Kinematics — what happens at the frontiers:

- does hadronic R_{AA} flatten at very high P_T ?
- \rightarrow might spell the doom for most (all?) current models if so
- are our notion of what happens at extreme rapidities correct?
- \rightarrow likely yes, as driven by pQCD, how much effort do we need to check?

NEW FRONTIERS

Tomography — trying to fit the hydro medium to high P_T :

- largely means measuring observables against v_n event plane
- \rightarrow images spatial eccentricities
- \rightarrow ratio observables aiming to overcome lack of model precision
- also jet-induced shockwave propagation
- \rightarrow needs coupled hard-soft modeling
- \rightarrow hard work to get the theory under control

Medium constituents — what is a QGP made of:

- need to use quark mass dependence to unravel (small) elastic channel
- \rightarrow precision pathlength dependence of c and b showers, D-D correlations
- \rightarrow high enough to have Q^2 evolution, low enough that mass matters
- \rightarrow need this at intermediate $P_T \sim 10-20~{\rm GeV}$
- ideally look for conversion photons simultaneously
- \rightarrow conversion rate depends on what you convert on
- also Molière scattering (U.A. Wiedemann)
- \rightarrow rare large angle elastic scatterings on medium constituents

Two basic choices at this point — what is jet quenching?

A moderately well-calibrated tool to study interesting other physics?

• the key observables have been measured, we know the basic physics \rightarrow theory: constrain models against the key observables (not the others. . .) \rightarrow experiment: measure specific observables using the tool

A concept to be further poked at in the hope that it breaks?

- all bets are open
- \rightarrow theory: produce new ideas on how jets could be suppressed
- \rightarrow experiment: measure the classics at higher \sqrt{s} and with more precision

Backup

Idea: Start with three different scenarios, of which we know two to be incorrect \Rightarrow start to constrain with **jet** observables, see at which point we find out

• YaJEM-DE

- \rightarrow constrained by available RHIC and LHC data
- \rightarrow pathlength dependence driven by $Q_0 \sim \sqrt{E/L}$, 10% elastic energy loss
- \rightarrow broadens showers, breaks self-silimarity at fixed P_T

• YaJEM-E

- \rightarrow incoherent, 100% elastic energy transfer into the medium as drag force
- \rightarrow collimates showers, breaks self-similarity at fixed P_T

• YaJEM+BW

- \rightarrow utilizes the Borghini-Wiedemann prescription to enhance low z gluon production
- \rightarrow pathlength dependence implemented as incoherent
- \rightarrow broadens showers, preserves self-similarity

• decent description of jet $R_{AA} P_T$ dependence (YaJEM-DE does actually worst) \rightarrow no sensitivity to pathlength dependence, broadening, self-similarity. . .

- tension for both YaJEM-E and YaJEM+BW if full P_T dependence is used \rightarrow see self-similarity of YaJEM+BW as unchanged shape
- perhaps one might rule out YaJEM-E based on this
- \rightarrow however, we usually ask for higher standards

- in the hadronic sector, YaJEM+BW is completely off
- \rightarrow leading hadron R_{AA} clearly is not fractional energy loss
- and even with normalization of v_2 open, an incoherent mechanism is in the shape $\rightarrow Q^2$ evolution matters, and clustering obscures it

Re-fitting such that hadron R_{AA} at RHIC is reproduced \rightarrow 10% correction for YaJEM-DE. factor 2 for YaJEM-E. factor 3.6 for YaJEM+BW

• a glance at RHIC I_{AA} would leave no doubt about what's realistic \rightarrow here's where the constraints are