

Detailed study of parton energy loss via measurement of fractional momentum loss of high p_T hadrons in heavy ion collisions

Takao Sakaguchi Brookhaven National Laboratory for the PHENIX Collaboration

10th International Workshop on High-pT Physics in the RHIC/LHC era

9-12 September 2014 SUBATECH Nantes

Hard scattering as densimeter

- Parton may change its momentum in the medium.
 - Energy loss through Gluon radiation, etc..
- Effect is path-length and parton density dependent ~a densimeter~.
- Look at leading particles of jet as a measure of jet energy.

High p_T hadron R_{AA}

- Measured in 200GeV Au+Au collisions.
- π^0 and η are very consistent.
- Results have been solid over years.

PRC82, 011902(R) (2010)

Collision energy dependence of R_{AA}

- π⁰ in Cu+Cu @ 200, 62.4, 22.4GeV (RHIC Year-5)
 - 200GeV and 62GeV show suppression, and 22.4GeV shows enhancement (Cronin)
- π⁰ in Au+Au @ 200, 62.4, 39GeV (RHIC Year-4, 7, 10)

Centrality dependence of R_{AA}

- Centrality dependence of integrated $\pi^0 R_{AA}$ was investigated in Cu+Cu and Au+Au collisions
 - As a function of cms energy
- Top: Cu+Cu: - 2.5<p_T<3.5GeV/c
- Bottom: Au+Au p_T>6GeV/c
- Indication of a switch of suppression and enhancement below 39GeV?

Similar suppression for RHIC and LHC?

- RHIC data from PHENIX
 publication
 - π^0 in Au+Au @ 0.2TeV
- LHC data from ALICE publication
 - Charged hadrons in Pb+Pb
 @ 2.76TeV
- Center-of-mass energies differ by a factor of 14!
- Similar R_{AA} doesn't mean similar energy loss
 - R_{AA} is not a good quantity?
 - Power of the spectra is different → energy loss will be different

10th International Workshop on High-pT Physics in the RHIC/LHC era

Looking at suppressions from a different angle

2014-09-12

T. Sakaguchi, HPT2014@Nantes, France

New quantity ~momentum loss~

2014-09-12

- Coming back to the original idea: measuring energy loss of partons
- Statistically measure the fractional momentum loss ($\delta p_T/p_T$) of high p_T hadrons instead of R_{AA} .

$$p_T : p_T(p+p)$$

$$\delta p_T = p_T(p+p) - p_T(A+A)$$

(p+p) denotes p+p yield scaled by number of binary nucleonnucleon collisions (N_{coll}).

9

In 2005, statistics was not enough, so..

• We assumed that the spectra at high p_T follows power-law function $d^3\sigma$

$$E\frac{d^{3}\sigma}{dp^{3}} \propto p_{T}^{-\prime}$$

- With this assumption, we wrote a formula to obtain $\delta p_T/p_T$ from R_{AA}
 - Fractional momentum shift: $S(p_T)/p_T = S_0$

$$\frac{(1+N_{AA}^{evt})d^2N_{AA}(p_T)/dp_Tdy}{\langle T_{AA}\rangle} = \frac{d^2\sigma_{pp} \left[p_T' = p_T + S(p_T)\right]}{dp_T'dy} \times \left[1 + dS(p_T)/dp_T\right]$$

$$R_{AA}(p_T) = \frac{[p_T + S(p_T)]^{-n+1}}{p_T^{-n+1}} [1 + dS(p_T)/dp_T]$$
$$= [1 + S(p_T)/p_T]^{-n+1} [1 + dS(p_T)/dp_T]$$

$$R_{AA}(p_T) = (1 + S_0)^{-n+2}$$
$$R_{AA}(p_T)^{1/(n-2)} = \frac{1}{1 + S_0}$$

 $S_{loss} = S(p_T) / (p_T + S(p_T)) = 1 - 1 / (1 + S_0)$ = 1 - R_{AA} (p_T)^{1/(n-2)}

PHENIX, PRC76, 034904 (2007)

2014-09-12

<u>Note p_⊤ is p_⊤ in Au+Au</u>

T. Sakaguchi, HPT2014@Nantes, France

S_{loss} in 200GeV Au+Au collisions

- $S_{loss} (\equiv \delta p_T / p_T)$, where p_T is p_T at a Au+Au point
- Lines: $S_{loss} \propto N_{part}^{2/3}$
 - S_{loss} increases approximately like $N_{part}^{2/3}$
 - GLV and PQM model suggested 2/3

Path-length dependence of R_{AA}

- PHENIX measured the R_{AA} as a function of emission angle with respect to event planes for several centralities
 - Gives handle of path-length that partons traverse
- L_{ϵ} is path from the center of ellipse to the edge

$$L_{\varepsilon} = \frac{b\sqrt{1+\varepsilon}}{\sqrt{1+\varepsilon\cos(2\Delta\varphi)}}, b = \sqrt{\left\langle x^2 \right\rangle}$$

Path-length dependence of S_{loss}

- Converted R_{AA} to S_{loss} and plotted against L_{ϵ}
- Data points nicely aligned for 5<p_T<8GeV/c

ALICE recently performed similar study

- Using Pb+Pb 2.76TeV data (ALICE). L should be equivalent to the L $_{\!\!\epsilon}$ in the previous slide
- L is not very good at higher p_T ?

10th International Workshop on High-pT Physics in the RHIC/LHC era

With better statistics..

2014-09-12

T. Sakaguchi, HPT2014@Nantes, France

Direct calculation is possible

- Direct calculation of fractional momentum loss $(\delta p_T/p_T)$ became possible.
- One doesn't need to assume the function form of the spectra.

Direct calculation is possible

- Direct calculation of fractional momentum loss $(\delta p_T/p_T)$ became possible.
- One doesn't need to assume the function form of the spectra.

Fractional momentum loss ($\delta p_T/p_T$) of π^0

- Measured fractional momentum loss ($\delta p_T/p_T$) instead of R_{AA}
 - In Au+Au collisions
- $\delta p_T/p_T = 0.2$ in 0-10% centrality, =0.02 in 70-80% centrality

Energy dependence of $\delta p_T/p_T$ (I)

- $\delta p_T/p_T$ decreases significantly going from 200 to 62, 39GeV.
- Significantly different $\delta p_T/p_T$ while the R_{AA} is similar.

Energy dependence of $\delta p_T/p_T$ (II)

• $\delta p_T/p_T$ increase by a factor of <u>1.5</u> from 200GeV to 2.76TeV.

Energy dependence of $\delta p_T/p_T$ (III)

• $\delta p_T/p_T$ from 62GeV to 2.76TeV: by a factor of <u>6</u> change!

Systematic studies across systems

- We tried to plot $\delta p_T/p_T$ against universal variables
- Number of participant nucleons (N_{part})
- Number of quark participants (N_{qp})
- Charged multiplicity (dN_{ch}/d η), as a measure of the energy density

Number of quark participants (Nqp)?

- Number of quark participants, N_{qp}, is estimated using a Glauber model.
 - Nucleons are distributed using a Woods-Saxon distribution.
 - Quarks are distributed around the nucleon centers following: $\rho(r) = \rho_0^{\text{proton}} e^{-ar}$, where a = 4.27 fm⁻¹.
- Quarks interact when their distance, d, satisfies the condition of:

 Quark-quark inelastic cross section (σ_{qq}^{inel}) is estimated by reproducing the n-n inelastic cross section of:

$\sqrt{s_{NN}}$ [GeV]	$\sigma_{nn}^{inel.}$	$\sigma_{qq}^{inel.}$
2700	64.0	18.4
200	42.3	9.36

Ratios of N_{qp}/N_{part} as a function of N_{part} for 62, 130 and 200GeV Au+Au collisions

T. Sakaguchi, HPT2014@Nantes, France

Is N_{qp} a good scaling variable?

- Recently, PHENIX found that the $dE_T/d\eta$ scales better with N_{qp} than N_{part}
- $dE_T/d\eta$ affects the energy loss of partons

$\delta p_T/p_T$ over collision systems (vs N_{part})

- Plotting against N_{part}
 - N_{part} are obtained in given centrality at given cms energy.
 - $\delta p_T/p_T$'s at p_T =7GeV/c of p+p are plotted.

$\delta p_T/p_T$ over collision systems (vs N_{qp})

- Plotting against N_{qp}
 - N_{qp} are obtained in given centrality at given cms energy.
 - $\delta p_T/p_T$'s at $p_T=7$ GeV/c of p+p are plotted.

$\delta p_T/p_T$ over collision systems (vs dN_{ch}/dη)

- Plotting against $dN_{ch}/d\eta$ (as a measure of energy density)
 - $dN_{ch}/d\eta$ are obtained in given centrality at given cms energy.
 - $\delta p_T/p_T$'s at p_T =7GeV/c of p+p are plotted.

Consistency with previous studies

- PHENIX studied fractional momentum loss in two publications
 - PRC76, 034904 (2007), PRL101, 232301 (2008)
 - Assuming the spectra shape is power-law with the power "n", we can write:

$$S_{loss} = \delta p_T / p_T = \beta N_{part}^{\alpha}$$
$$R_{AA} = (1 - S_{loss})^{n-2} = (1 - \beta N_{part}^{\alpha})^{n-2}$$

• If we assume $dN_{ch}/d\eta \propto N_{part}^{1.16}$, found in PRC71, 034908(2005), we can write the relationship as follows:

$$\delta p_T / p_T = \beta N_{part}^{\alpha} = \beta (dN_{ch} / d\eta)^{\alpha/1.16} \equiv \beta (dN_{ch} / d\eta)^k$$

T. Sakaguchi, HPT2014@Nantes, France

$\delta p_T/p_T$ over collision systems (vs dN_{ch}/dη)

- Plotting against $dN_{ch}/d\eta$ (as a measure of energy density)
 - $dN_{ch}/d\eta$ are obtained in given centrality at given cms energy.
 - $\delta p_T/p_T$'s at p_T =7GeV/c of p+p are plotted.

Review the money plot

Summary

- Looking at fractional momentum loss gives more insight on actual energy loss of partons
 - Similar R_{AA} does not give similar energy loss
- Centrality, system, and energy dependence of fractional momentum loss is studied.
 - A trend is seen from 200GeV Au+Au to 2.76TeV Pb+Pb
- $\delta p_T/p_T$ vs $dN_{ch}/d\eta$ for 200GeV Au+Au and Cu+Cu collisions tend to merge into the one for 2.76TeV Pb+Pb collisions at larger $dN_{ch}/d\eta$, independent of $\sqrt{s_{NN}}$.
- Within same $\sqrt{s_{NN}}$, both N_{part} and N_{qp} scaling work very well.

Backup

Hard scattering as densimeter

- Parton may change its momentum in the medium.
 Energy loss through Gluon radiation, etc..
- Effect is path-length and system dependent ~a densimeter~.
- Look at leading particles of jet as a measure of jet energy.

$\delta p_T/p_T$ over collision systems (vs dN_{ch}/d η)

- Plotting against $dN_{ch}/d\eta$ (as a measure of energy density)
 - $dN_{ch}/d\eta$ are obtained in given centrality at given cms energy.
 - $\delta p_T/p_T$'s at p_T =7GeV/c of p+p are plotted.

Consistency with previous studies

- PHENIX studied fractional momentum loss in two publications
 - PRC76, 034904 (2007), PRL101, 232301 (2008)
 - Assuming the spectra shape is power-law with the power "n", we can write:

$$S_{loss} \equiv \delta p_T / p_T = \beta N_{part}^{\alpha}$$
$$R_{AA} = (1 - S_{loss})^{n-2} = (1 - \beta N_{part}^{\alpha})^{n-2}$$

In this study, if we assume $dN_{ch}/d\eta \propto N_{part}$, we can write the relationship as follows: $\delta p_T / p_T = \beta (dN_{ch} / d\eta)^{\alpha}$

d+Au and Au+Au system similarity?

- Au+Au 60-92% and d+Au 0-20% have similar N_{part}, N_{coll}
- Ratios of all ID'ed hadron spectra are on the same curve
- Common production mechanism?
- If all CNM scales with N_{part}, ratios may mean E_{loss} in the medium in peripheral Au+Au
- Low p_T increase may rise from rapidity shift in d+Au

Setup for measurement

- Event triggered by a coincidence of BBC South and BBC North.
 - Sitting in 3.1<|η|<3.9
- π^0 and η measurement
 - EMCal(PbSc, PbGl): Energy measurement and identification of real photons.
 - Tracking(DC, PC): Veto to Charged particles.

Results presented here are obtained from 0.813 nb⁻¹ Au+Au 200GeV events recorded by PHENIX in 2007.

How we measure π^0 , η ?

• Reconstruct hadrons via 2γ invariant mass in EMCal (example is in Au+Au)

$$M^{2} = (E_{1} + E_{2})^{2} - (\mathbf{p}_{1} + \mathbf{p}_{2})^{2} = 2E_{1}E_{2}(1 - \cos\theta)$$

2014-09-12

- Subtract Combinatorial background
 - Compute Mass using γs from different events. (mixed-event technique)

PRC87, 034911 (2013)

FIG. 3: (Color online) Invariant mass spectrum of two photons (black) and the corresponding mixed events (red) at $7 < p_T < 7.5 \text{GeV}/c$ in minimum bias collisions. Vertical lines indicate a $\pm 2.5 \sigma$ integration window.

PRC82, 011902(R) (2010)

π⁰, η spectra in Au+Au

• Spectra reached to ~20GeV/c for π^0 and ~22GeV/c for η

Systematic errors

- Type A: pointby-point fluctuating errors
- Type B: p_Tcorrelated errors
- Type C: overall normalization errors

a systematic errors								
source	type	5GeV	10GeV	15GeV	20GeV			
peak extraction	В	2	2	2	2			
acceptance	С	2.5	2.5	2.5	2.5			
PID efficiency	В	7	8	8.5	9			
energy scale	В	7.5	8	8	8			
photon conversion	С	2	2	2	2			
cluster merging	В	0	0	8	18			
total		11	12	15	22			

⁰ avetematic arrors

η systematic errors

source	type	5GeV	10GeV	15GeV
peak extraction	В	4	3.5	3
acceptance	С	2.5	2.5	2.5
PID efficiency	В	7	8	8.5
energy scale	В	11	12	12
photon conversion	С	2	2	2
total		12	15	15