Identified Two-particle Correlations and Quantum Number Conservation in p-p, p-Pb and Pb-Pb Collisions at LHC Energies

<u>Gyula Bencédi¹,</u>

Gergely Gábor Barnaföldi¹, Levente Molnár²

¹Wigner Research Centre for Physics, Budapest, Hungary ²Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

September 12, 2014

Outline

1.

Motivation

• importance of particle correlations at high- p_{T}

Monte Carlo studies of two-particle correlations in terms of quantum number conservations

- Focusing on identified associated particle spectra
- Identified particle yields from like-sign and unlike-sign correlations
- Comparison of triggered relative yields in p-p, Pb-Pb and p-Pb
 - → Collision energy (p-p)
 - → Event multiplicity (p-p)
 - → Centrality (Pb-Pb)

Summary, Outlook

1. Importance of particle correlations at high p_{τ}

- Hadronization in QGP
 - High- p_T hadrons, particle ratios, collective effects
 - High- p_T factorization holds: PDF x pQCD x FF + jet quenching HI (PID?)
 - Intermediate p_T : recombination rises
- Fragmentation effects, including PID: recombination effects in intermediate $p_T (R_{CP}, R_{AA}, Barion/Meson, v_2)$
- Jet-like correlations: ridge (AuAu,dAu,pPb)
 - PID could shed light on formation mechanism...

Monte Carlo datasets and analysis cuts

Collision system	$\sqrt{s}\left(\sqrt{s_{NN}}\right)$	Statistics
р-р	14 TeV	500 M
p-p	7 TeV	100 M
p-p	2.76 TeV	100 M
p-p	200 GeV	500 M
Pb-Pb (0-10%)	2.76 TeV	4 M
Pb-Pb (30-40%)	2.76 TeV	2 M
Pb-Pb (80-90%)	2.76 TeV	10 M
p-Pb (min.bias)	5.02 TeV	10 M

- p-p events generated by PYTHIA8 (tune 4C)
- Pb-Pb and p-Pb events generated by HIJING
- only charged, final-state particles $(\pi^{\pm}, K^{\pm}, p, \bar{p}, and the charged hadrons <math>(h^{\pm})$
- $|\eta_{trig}| > 1$ and $|\eta_{assoc}| > 1$ were rejected
- transverse momenta of the trigger particles selected within $2 \text{ GeV/c} < p_{T,trig} < 25 \text{ GeV/c}$
- $p_{T,assoc} < p_{T,trig}$ to avoid double counting
- p_T spectra were projected within $|\Delta \eta| < 1$

2.

Quantum number conservation in correlations

Identified associated particle spectra I.

- PID-PID associated \textbf{p}_{τ} spectra up to high- \textbf{p}_{τ}
- p-p @ 7TeV, Pythia (tune320)
- Same side
- Example: Trigger particle: proton in 2 < p_τ [GeV/c] < 25 range
- Associated: π +, π -,K+,K-,p,pbar
- Acceptance: |η|<1.

2.

Quantum number conservation in correlations

Identified associated particle spectra I.

- PID-PID associated \textbf{p}_{τ} spectra up to high- \textbf{p}_{τ}
- p-p @ 7TeV, Pythia (tune320)
- Same side
- Example: Trigger particle: proton in 2 < p_T [GeV/c] < 25 range
- Associated: π +, π -,K+,K-,p,pbar
- Acceptance: |η|<1.

Observation: differences between proton/anti-proton triggered associated yields

Strong effect on the near side

Identified associated particle spectra II.

- Quantum number conservation can be tested by plotting the identified associated spectra for identified trigger hadrons
- > Effect is on the near side

- The yields of the PIDassociated spectra significantly decrease with the selection of charged pion, kaon and proton triggers, respectively
- The basic conservation laws of the quantum numbers – such as charge (Q), baryon number (B), and strangeness (S) – are fulfilled and could be reflected in the PID-associated spectra after the hadronization process

Identified associated particle spectra II.

- Quantum number conservation can be tested by plotting the identified associated spectra for identified trigger hadrons
- > Effect is on the near side

- The yields of the PIDassociated spectra significantly decrease with the selection of charged pion, kaon and proton triggers, respectively
- The basic conservation laws of the quantum numbers – such as charge (Q), baryon number (B), and strangeness (S) – are fulfilled and could be reflected in the PID-associated spectra after the hadronization process.
- Strength of the effects

Trigger / Assoc	Strength of effect	
	Near side	Away side
$\pi^+ / (\pi^+, \pi^-)$	~ 2	~ 1
$K^+ / (K^+, K^-)$	~ 5	~ 1
$p \neq (p, \bar{p})$	~ 10	~ 1

Gyula Bencedi, Wigner RCP

Identified associated particle ratios – a closer look

- $\frac{\frac{1}{N_{\text{trig}}^{i}} \star \frac{dN_{\text{assoc}}}{dp_{T,assoc}}}{\frac{1}{N_{\text{trig}}^{j}} \star \frac{dN_{\text{assoc}}}{dp_{T,assoc}}},$
- pp @ 7TeV, PYTHIA 6 (tune 320)
- $|\Delta \phi| < pi/2, |\Delta \eta| < 2.$

2.

- Trigger particle: proton
 - in 2<p_τ (GeV/c)<25
- Associateds: π +, π -,K+,K-,p,pbar
- Acceptance: |η|<1
- In an unmodified fragmentation process the baryon number and charge is conserved and leads to highly correlated distributions in the same phase space

 $i \in \{\pi^{\pm}, K^{\pm}, p^{\pm}, h^{\pm}\}, \quad j \in \{h^{\pm}\}$

Identified associated particle ratios – a closer look

- $\frac{\frac{1}{N_{\text{trig}}^{i}} \star \frac{dN_{\text{assoc}}}{dp_{T,assoc}}}{\frac{1}{N_{\text{trig}}^{j}} \star \frac{dN_{\text{assoc}}}{dp_{T,assoc}}},$
- pp @ 7TeV, PYTHIA 6 (tune 320)
- $|\Delta \phi| < pi/2, |\Delta \eta| < 2.$

2.

- Trigger particle: proton
 - in 2<p_τ (GeV/c)<25
- Associateds: π +, π -,K+,K-,p,pbar
- Acceptance: |η|<1
- In an unmodified fragmentation process the baryon number and charge is conserved and leads to highly correlated distributions in the same phase space

 $i \in \{\pi^{\pm}, K^{\pm}, p^{\pm}, h^{\pm}\}, \quad j \in \{h^{\pm}\}$

Gyula Bencedi, Wigner RCP

Identified particle yields from like-sign and unlikesign correlations in pp and PbPb collisions

To extract and enhance the expected quantum number conservation effects, the ratio of the PID-triggered-tocharged hadron-triggered associated spectra have been plotted

- The splitting effect can be observed for any of the trigger species both in p-p and Pb-Pb collisions. The splitting is larger on the near-side than on the away-side.
- Qualitatively the strength of the quantum numbers: charge (Q) < strangeness (S) < baryon number (B)
- The largest splitting effect can be seen for unlike-sign correlations of protons and antiprotons.

Identified particle yields from like-sign and unlikesign correlations in pp and PbPb collisions

To extract and enhance the expected quantum number conservation effects, the ratio of the PID-triggered-tocharged hadron-triggered associated spectra have been plotted

- The splitting effect can be observed for any of the trigger species both in p-p and Pb-Pb collisions. The splitting is larger on the near-side than on the away-side.
- Qualitatively the strength of the quantum numbers: charge (Q) < strangeness (S) < baryon number (B)
- The largest splitting effect can be seen for unlike-sign correlations of protons and antiprotons.

Identified particle yields from like-sign and unlikesign correlations in pp, pPb, and PbPb collisions

By plotting the differences between the **(+/-) unlike-sign and (+/+) like-sign** trigger/associated particles pairs for the PID-triggered-to/charged hadron triggered yields

09/12/14

 $p_{T,assoc} \; [GeV/c]$

Identified particle yields from like-sign and unlikesign correlations in pp, pPb, and PbPb collisions

By plotting the differences between the **(+/-) unlike-sign and (+/+) like-sign** trigger/associated particles pairs for the PID-triggered-to/charged hadron triggered yields

09/12/14

 $p_{T,assoc} \; [GeV/c]$

Identified particle yields from like-sign and unlikesign correlations in pp, pPb, and PbPb collisions

By plotting the differences between the **(+/-) unlike-sign and (+/+) like-sign** trigger/associated particles pairs for the PID-triggered-to/charged hadron triggered yields

2.

 $p_{T,assoc} \left[GeV/c
ight]$

Identified particle yields from like-sign and unlikesign correlations in pp, pPb, and PbPb collisions

By plotting the differences between the **(+/-) unlike-sign and (+/+) like-sign** trigger/associated particles pairs for the PID-triggered-to/charged hadron triggered yields

2.

 $p_{T,assoc} \left[GeV/c
ight]$

Identified particle yields from like-sign and unlikesign correlations in pp, pPb, and PbPb collisions

By plotting the differences between the **(+/-) unlike-sign and (+/+) like-sign** trigger/associated particles pairs for the PID-triggered-to/charged hadron triggered yields

Yield dependence on collision energy in p-p

Near side: the splitting decreases with increasing \sqrt{s}

Quantum number conservation in correlations 2. Yield dependence on collision energy in p-p 10^{2} pp, Pythia 8 (tune 4C) Near side, $|\Delta \phi| < \pi/2$ √s = 14 TeV Near side: $\left(\mathrm{d}N_{assoc}^{PID}/\mathrm{d}p_{T,assoc}\right)^{(+/+)}$ 10the splitting decreases with κ р increasing \sqrt{s} 10^{-1} Away side, $\pi/2 < \Delta \phi < 3\pi/2$ (-/+) $\left(\mathrm{d}N_{assoc}^{PID}/\mathrm{d}p_{T,assoc} ight)$ Away side: 10no obvious energy dependence, kaons κ π p show small asymmetry for all \sqrt{s} 10^{-}

20

Gyula Bencedi, Wigner RCP

0

10

0

20

 $p_{T,assoc} \left[GeV/c
ight]$

10

0

10

20

Yield dependence on event multiplicity in p-p

Near side: the higher the event multiplicity the smaller the size of the splitting due to increasing underlying event contribution at higher multiplicities

Yield dependence on event multiplicity in p-p

Near side: the higher the event multiplicity the smaller the size of the splitting due to increasing underlying event contribution at higher multiplicities

2.

Away side: no obvious dependence with event multiplicity

Yield dependence on centrality in Pb-Pb

Near side: reverse evolution pattern is observed for kaons and protons as a function of centrality

Yield dependence on centrality in Pb-Pb

Near side: reverse evolution pattern is observed for kaons and protons as a function of centrality

2.

Away side: kaons and protons show similar reversal trend as on the near side

Δφ projections

p-p 7TeV, PYTHIA 6 (Perugia0)

bins

trigger $p_{\rm T}$

Gyula Bencedi, Wigner RCP

Gyula Bencedi, Wigner RCP

Δφ projections

trigger p_{T} bins

Pb-Pb 2.76TeV, HIJING

Gyula Bencedi, Wigner RCP

3. Summary and Outlook

MC simulations and analysis have been performed to study PID-PID azimuthal correlations at midrapidity

The observed splitting effect of the PID-triggered-to-charged hadron-triggered associated spectra shows

- a peculiar pattern which
- The the most prominent for p-p unlike-sign associated particle pairs (compared to K+/K-, +- pairs) on the nearand away side;
- has a reverse behaviour in Pb-Pb and in p-Pb on the away-side and remains unchanged on the near-side in Pb-Pb;
- has similar behaviour in the p-p, peripheral Pb-Pb and minimum bias p-Pb on the near-side in terms of the conservation of baryon numbers;
- decreases towards higher event multiplicities in p-p;
- decreases with increasing collision energies from RHIC to LHC in p-p.
- No experimental measurements to contrast with the observed MC analysis
 - Further Monte Carlo checks needed to have a better understanding...
- Analysis has been started to perform the same analysis exploiting the PID capabilities of ALICE at the LHC
- The observed interesting patterns can be measured at higher momentum in ALICE
 - In principle this can be done by the TPC, statistical method: relativistic dE/dx
 - Purity PID cuts

3. Summary and Outlook

References:

- [1] ALICE Collaboration, T. Acconcia et al., "A Very High Momentum Particle Identification Detector," http://arxiv.org/abs/

1309.5880arXiv:1309.5880 [nucl-ex]

- [2] G. Bencédi, G. G. Barnaföldi, and L. Molnár, "Monte Carlo Studies of Identified Two-particle Correlations in p-p and Pb-Pb Collisions," http://arxiv.org/abs/1403.0117arXiv:1403.0117 [hep-ex]

Backups...

Azimuthal correlations

Quantum number conservation in correlations 2. **Δφ projections (flavor conservations, K)** $\times 10^{-3}$ Trigger / Assoc : K⁺ / K⁻ , 5 < p_{.trig} (GeV/c) < 7 $\times 10^{-3}$ Trigger / Assoc : K⁺ / K⁺ 7 < p_{____} (GeV/c) < 10 ∆η| **< 1** |∆η| < 1 $rac{1}{N_{trigger}}rac{dN_{associated}}{d(\Delta\Phi)}$ [1/rad] 0.5 dN_{associated} [1/rad] d(ΔΦ) pp √s = 7 TeV -- Pythia 6.421, Perugia-0 ____ 2 < p____ (GeV/c) < 3 pp √s = 7 TeV -- Pythia 6.421, Perugia-0 ⊖ 2 - 3 < p_{⊥asso} (GeV/c) < 4 _ 3 < p_{T,asso} (GeV/c) < 4 0.5 $4 < p_{T,asso}$ (GeV/c) < 5 0.4 $4 < p_{Tasso}$ (GeV/c) < 5 _ 5 < p_{T,asso} (GeV/c) < 7 0.4 0.3 Ntrigger 0.3 0.2 0.2 0.1 0.1 0 0 2 3 0 3

- Near side flavor and charge correlations decrease as a function of $p_{T,assoc}$ and $p_{T,trig}$ (the width narrows) compared to the away side correlations
- Away side stays roughly constant when the trigger particle momentum is increased

 $\Delta \Phi$ [rad]

 $\Delta \Phi$ [rad]

