

Jet fragmentation and multijet studies in heavy ion collisions at ATLAS

Martin Spousta on behalf of the ATLAS Collaboration

Charles University

- Jet studies in heavy ion collisions at ATLAS:
 - Di-jet asymmetry measurement
 - Inclusive jet suppression jet R_{AA} and R_{CP}
 - Azimuthal dependence of the jet suppression
 - Jet fragmentation
 - Neighboring jet production
 - Jets and bosons
- Typical configuration of reconstruction:
 - Anti-kt R=0.2, 0.3, 0.4 jets reconstructed in the calorimeter.
 - Data: 2011 Pb+Pb run of 140 μb⁻¹, events triggered using minimum bias trigger or high-level trigger. For some measurements p+p data at 2.76 TeV from 2013.
 - MC: PYTHIA jets embedded to minimum-bias Pb+Pb Data.

Jet studies in heavy ion collisions

- Anti-kt R=0.2, 0.3, 0.4 jets reconstructed in the calorimeter.
- Data: 2011 Pb+Pb run of 140 μb⁻¹, events triggered using minimum bias trigger or high-level trigger. For some measurements p+p data at 2.76 TeV from 2013.
- MC: PYTHIA jets embedded to minimum-bias Pb+Pb Data.

Inclusive jet suppression in Pb+Pb

- Jet spectra measured in 8 centrality bins and 5 bins of rapidity within |y|<2.1.
- Spectra used to calculate the nuclear modification factor

$$R_{\rm AA} = \frac{\frac{1}{N_{\rm evnt}} \frac{{\rm d}^2 N_{\rm jet}^{PbPb}}{{\rm d}p_{\rm T} {\rm d}y} \Big|_{\rm cent}}{\langle T_{\rm AA} \rangle_{\rm cent} \times \frac{{\rm d}^2 \sigma_{\rm jet}^{pp}}{{\rm d}p_{\rm T} {\rm d}y}}$$

 At different rapidities different steepness of the spectra and different q/g ratio => allows to extract some of the details of the energy loss.

Inclusive jet suppression

- A modest grow of R_{AA} with increasing jet pt.
- Still significant suppression even for 50-60% centrality bin.
- Practically no rapidity dependence.

Jet fragmentation

• Measured quantity #1: Distribution of momentum of fragments inside jets, $D(p_T)$.

• Further, the central-to-peripheral ratio of the $D(p_T)$ distribution, $R_{D(pT)}$, is evaluated.

 Measured quantity #2: Distribution of longitudinal momentum fraction of fragments with respect to jet, D(z).

$$D(z)(p_{\rm T}^{jet}) = \frac{1}{N_{jet}} \frac{1}{\epsilon} \frac{dN}{dz} (p_{\rm T}^{jet}) = \frac{1}{N_{jet}(p_{\rm T}^{jet})} \frac{1}{\epsilon(p_{\rm T},\eta)} \left(\frac{\Delta N_{ch}(z, p_{\rm T}^{jet})}{\Delta z} - \frac{\Delta N_{ch}^{UE}(z, p_{\rm T}^{jet})}{\Delta z}\right)$$

$$z = p_{\rm T}/p_{\rm T}^{jet}\cos R$$

• Further, the central-to-peripheral ratio of the D(z) distribution, $R_{D(z)}$, is evaluated.

Track selection in Pb+Pb

MC to data comparison of tracking performance

- Tracks match to jets using $\Delta R = 0.4$ for all three radii.
- Track selection based on number of hits in Silicon tracker and Pixel detector and significance of pointing to the vertex.
- Tracks with $p_T>2$ GeV and $|\eta|<2.5$ used => jets reconstructed over $|\eta|<2.1$.

Important experimental corrections

- Contribution from UE to the measured distributions:
 - subtracted jet-by-jet
 - evaluated in each event using a grid of cones
 - each particle in the cone corrected for elliptic flow and difference in eta position
- Tracking efficiency correction:
 - as a function of: centrality, track p_T , and pseudorapidity
- Correction of the jet p_T to reduce the effect of the jet up-feeding due to jet energy resolution.
- Unfolding using SVD method.

D(z) and D(pt) distributions for R=0.4 jets

- Fully corrected D(z) distribution for R=0.4 jets.
- Yellow boxes: uncorrelated or partially correlated systematic uncertainties due to:
 - Jet energy scale
 - Jet energy resolution
 - Track reconstruction
 - Unfolding
 - Residual MC non-closure
- Statistical error by error bars (typically invisible).
- Gray line to guide the eye.

 $R_{D(z)}$ and $R_{D(pt)}$

 $R_{D(z)}$ and $R_{D(pt)}$

Full set of $R_{D(z)}$ for R=0.4 jets

Full set of $R_{D(pt)}$ for R=0.4 jets

Fragmentation for different jet radii

Quantifying the difference using $\Delta D(z)=D(z)|_{cent} - D(z)|_{60-80}$

Extending D(z) distributions

Neighboring jet production

Annulus around the test jet Neighbouring jet Φ Tes<mark>t jet</mark> ΔR max Π

- May help understanding the differences in the quenching of the two jets that do not result from the difference in the path length.
- May help understanding the role of mini-jets / hard gluon radiation.
- May help constraining the modifications of the parton shower.

 Neighboring jet production quantified using quantity previously measured at Tevatron

$$R_{\Delta R} = \frac{1}{dN_{jet}^{test}/dE_{T}^{test}} \sum_{i=1}^{N_{jet}^{test}} \frac{dN_{jet,i}^{nbr}}{dE_{T}^{test}} (E_{T}^{test}, E_{T,min}^{nbr}, \Delta R)$$

... the rate of neighboring jets that accompany a given test jet.

• $R_{\Delta R}$ evaluated also differentially in neighboring jet Et

- ... which are the E_{T} spectra of the third (or $n^{th})$ jet given the test jet E_{T}
- To quantify the centrality dependence the central-to-peripheral ratios, $\rho(R_{\Delta R})$, also evaluated

- 3 jet sizes: d=0.2, 0.3, and 0.4 jets (change in the notation for this analysis "d" is the jet size parameter "R")
- •5 bins in the test jet E_T
- •4 bins in the neighboring jet E_{T}
- Four centrality bins: 0 10% 20% 40% 80%
- The size of the annulus: $\Delta R_{min} < \Delta R < 1.6$, where
 - $\Delta R_{min} = 0.8$ (d=0.4 jet)
 - $\Delta R_{min} = 0.6$ (d=0.3 jets)
 - $\Delta R_{min} = 0.5$ (d=0.2 jets)
- Measurement restricted over the range with well understood detector response, $|\eta| < 2.8 =>$ test jet cut of $|\eta| < 1.2$

Important experimental corrections

- Fake jets rejected using standard procedure of matching to clusters and track jets.
- Jet E_T corrected to reduce the effect of up-feeding due to finite JER.
- Contribution from two independent hard processes subtracted using the estimate of the rate from the MC to data overlay.
- Distributions need to be further corrected, e.g. for the case when two neighboring jets overlap
- Bin-by-bin correction applied to correct for:
 - effects due to finite jet energy resolution and jet reconstruction efficiency
 - migration in/out of the jet annulus due to finite jet position resolution

Efficiency and bin-by-bin corrections

Correction flow

Unfolded = *k* * (Raw – Combinatorics)

- Monotonic increase with increasing test jet $E_{\rm T}$ (shape already known from $p\overline{p}$ D0).
- Clear trends of suppression with increasing centrality.

R_{ΔR} – neighboring jet E_T dependence

Central to peripheral ratio of $R_{\Delta R}$ as a function of <u>neighboring jet $E_{\underline{T}}$ </u>. Decrease of suppression with increasing jet $E_{\overline{T}}$... may be expected for the configuration of magnitude of neighboring jet $E_{\overline{T}}$ approaching the magnitude of test jet $E_{\overline{T}}$ (the per-test jet normalization in the $R_{\Delta R}$ effectively removes the suppression).

- Jet fragmentation evaluated in terms of D(z) and $D(p_T)$ distributions and their central-to-peripheral ratio for three different jet radii, six different centrality bins.
- A modest but significant modification of fragmentation seen: an enhancement in fragment yield in central collisions for z < 0.04, a reduction in fragment yield for 0.04 < z < 0.25 and an enhancement in the fragment yield for z > 0.25.
- Neighboring jet rates, $R_{\Delta R}$, evaluated as a function of test jet E_T and neighboring jet E_T for three different jet radii and four centrality bins.
- Significant suppression seen in central collisions for the configuration when neighboring jet E_T is different from test jet E_T which has similar trends as the suppression in inclusive jets.
- Indication of the centrality dependence of the power-law index of neighboring E_{T} spectra.

Backup slides

Jet RAA

Improvements in jet reconstruction over the first analyses

- The use of MC to real data overlay
- Improvements in the UE subtraction
- Improvements in the determination of the JES uncertainty:
 - Studying the response as a function of parton flavor and parton showers from different MC generators
 - Determine the response and uncertainty based on in-situ studies of gamma-jet and Z-jet correlations using in full 8 TeV pp data
 - Use the fragmentation measurement to judge the impact of modified fragmentation on JES uncertainty

Unfolding

- Correction from the reconstructed level to the truth level.
- Corrects mainly for jet energy and track momentum resolution.
- Singular value decomposition technique implemented in RooUnfold package used.

Unfolding

 Correction from the reconstructed 0-10% / 60-80% ATLAS Preliminary level to the truth level. Pb+Pb√s_{NN}=2.76 TeV 0.14 nb⁻¹ Corrects mainly for jet energy and anti-k₊ R = 0.4 track momentum resolution. Raw Unfolded Singular value decomposition 1.2 technique implemented in 1.1 RooUnfold package used. 0.9 0.8 0.7 Example of the **Raw/Unfolded** performance of unfolding for $R_{D(z)}$ distributions 0.9 0.8 0 10^{-1} 7

Unfolding performance for D(pt)

Ratios of $D(\xi)$

D(z) and D(pt) for R=0.2

10th International Workshop on High-pT Physics in the RHIC/LHC era

44

 $R_{D(z)}$ for R=0.3

 $R_{D(z)}$ for R=0.2

 $R_{D(pt)}$ for R=0.3

 $R_{D(pt)}$ for R=0.2

	$\delta R_{\Delta R}$		$\delta ho_{R_{\Delta R}}$
	0–10%	40-80%	0–10%
JES	12%	6%	5 %
JER	4%	2%	2%
Angular	20%	0.5%	20%
resolution	270	0.570	270
Unfolding	6%	2%	5%
MC	5%	5%	5%
Trigger	5%	_	5%

Systematic uncertainties for the neighboring jet measurement

Systematic uncertainties for the neighboring jet measurement

