

Jet fragmentation and multijet studies in heavy ion collisions at ATLAS

Martin Spousta on behalf of the ATLAS Collaboration

Charles University

- Jet studies in heavy ion collisions at ATLAS:
	- Di-jet asymmetry measurement
	- $-$ Inclusive jet suppression $-$ **jet R_{AA}** and R_{CP}
	- Azimuthal dependence of the jet suppression
	- **Jet fragmentation**
	- **Neighboring jet production**
	- Jets and bosons
- Typical configuration of reconstruction:
	- Anti-kt R=0.2, 0.3, 0.4 jets reconstructed in the calorimeter.
	- $-$ Data: 2011 Pb+Pb run of 140 μ b⁻¹, events triggered using minimum bias trigger or high-level trigger. For some measurements p+p data at 2.76 TeV from 2013.
	- MC: PYTHIA jets embedded to minimum-bias Pb+Pb Data.

Main topics of this talk

Jet studies in heavy ion collisions

- Anti-kt R=0.2, 0.3, 0.4 jets reconstructed in the calorimeter.
- $-$ Data: 2011 Pb+Pb run of 140 μ b⁻¹, events triggered using minimum bias trigger or high-level trigger. For some measurements p+p data at 2.76 TeV from 2013.
- MC: PYTHIA jets embedded to minimum-bias Pb+Pb Data.

Inclusive jet suppression in Pb+Pb

- Jet spectra measured in 8 centrality bins and 5 bins of rapidity within |y|<2.1.
- Spectra used to calculate the nuclear modification factor

$$
R_{\rm AA} = \frac{\frac{1}{N_{\rm evnt}} \frac{d^2 N_{\rm jet}^{PbPb}}{dp_{\rm T} dy} \Big|_{\rm cent}}{\langle T_{\rm AA} \rangle_{\rm cent} \times \frac{d^2 \sigma_{\rm jet}^{pp}}{dp_{\rm T} dy}}
$$

At different rapidities different steepness of the spectra and different q/q ratio => allows to extract some of the details of the energy loss.

Inclusive jet suppression

- A modest grow of R_{AA} with increasing jet pt.
- Still significant suppression even for 50-60% centrality bin.
- Practically no rapidity dependence.

Jet fragmentation

Measured quantity #1: Distribution of momentum of fragments inside jets, D(p_T).

$$
D(p_T)(p_T^{jet}) = \frac{1}{N_{jet}} \frac{1}{\epsilon} \frac{dN}{dp_T} (p_T^{jet}) =
$$
\n
$$
= \frac{1}{N_{jet}(p_T^{jet})} \frac{1}{\epsilon(p_T, \eta)} \left(\frac{\Delta N_{ch}(p_T, p_T^{jet})}{\Delta p_T} - \frac{\Delta N_{ch}^{UE}(p_T, p_T^{jet})}{\Delta p_T} \right)
$$
\n
$$
= \frac{1}{N_{jet}(p_T^{jet})} \frac{1}{\epsilon(p_T, \eta)} \left(\frac{\Delta N_{ch}(p_T, p_T^{jet})}{\Delta p_T} - \frac{\Delta N_{ch}^{UE}(p_T, p_T^{jet})}{\Delta p_T} \right)
$$
\n
$$
= \frac{1}{N_{jet}(p_T^{jet})} \frac{1}{\epsilon(p_T, \eta)} \left(\frac{\Delta N_{ch}(p_T, p_T^{jet})}{\Delta p_T} - \frac{\Delta N_{ch}^{UE}(p_T, p_T^{jet})}{\Delta p_T} \right)
$$
\n
$$
= \frac{1}{N_{jet}(p_T^{jet})} \frac{1}{\epsilon(p_T, \eta)} \left(\frac{\Delta N_{ch}(p_T, p_T^{jet})}{\Delta p_T} - \frac{\Delta N_{ch}^{UE}(p_T, p_T^{jet})}{\Delta p_T} \right)
$$

 \bullet Further, the central-to-peripheral ratio of the D(p_T) distribution, $R_{D(pT)}$, is evaluated.

Measured quantity #2: Distribution of longitudinal momentum fraction of fragments with respect to jet, D(z).

$$
D(z)(p_{\text{T}}^{jet}) = \frac{1}{N_{jet}} \frac{1}{\epsilon} \frac{dN}{dz} (p_{\text{T}}^{jet}) =
$$

=
$$
\frac{1}{N_{jet}(p_{\text{T}}^{jet})} \frac{1}{\epsilon(p_{\text{T}}, \eta)} \left(\frac{\Delta N_{ch}(z, p_{\text{T}}^{jet})}{\Delta z} - \frac{\Delta N_{ch}^{UE}(z, p_{\text{T}}^{jet})}{\Delta z} \right)
$$

$$
z = p_{\rm T}/p_{\rm T}^{jet} \cos R
$$

Further, the central-to-peripheral ratio of the $D(z)$ distribution, $R_{D(z)}$, is evaluated.

Track selection in Pb+Pb

MC to data comparison of tracking performance

- Tracks match to jets using Δ R = 0.4 for all three radii.
- Track selection based on number of hits in Silicon tracker and Pixel detector and significance of pointing to the vertex.
- \bullet Tracks with p $_{\rm T}$ >2 GeV and $|\eta|$ <2.5 used => jets reconstructed over |η|<2.1.

Important experimental corrections

- Contribution from UE to the measured distributions:
	- subtracted jet-by-jet
	- evaluated in each event using a grid of cones
	- each particle in the cone corrected for elliptic flow and difference in eta position
- Tracking efficiency correction:
	- as a function of: centrality, track p_T , and pseudorapidity
- Correction of the jet p_T to reduce the effect of the jet up-feeding due to jet energy resolution.
- Unfolding using SVD method.

D(z) and D(pt) distributions for R=0.4 jets

- Fully corrected D(z) distribution for R=0.4 jets.
- Yellow boxes: uncorrelated or partially correlated systematic uncertainties due to:
	- Jet energy scale
	- Jet energy resolution
	- Track reconstruction
	- Unfolding
	- Residual MC non-closure
- Statistical error by error bars (typically invisible).
- Gray line to quide the eye.

 $R_{D(z)}$ and $R_{D(pt)}$

 $R_{D(z)}$ and $R_{D(pt)}$

Full set of $R_{D(z)}$ for R=0.4 jets

Full set of $R_{D(pt)}$ for R=0.4 jets

Fragmentation for different jet radii

Quantifying the difference using $\Delta D(z) = D(z)|_{cent} - D(z)|_{60-80}$

Extending D(z) distributions

Neighboring jet production

Annulus around the test jet Neighbouring jet φ Test jet ΔR max Л

- May help understanding the differences in the quenching of the two jets that do not result from the difference in the path length.
- May help understanding the role of mini-jets / hard gluon radiation.
- May help constraining the modifications of the parton shower.

Neighboring jet production quantified using quantity previously measured at Tevatron

$$
R_{\Delta R} = \frac{1}{dN_{\rm jet}^{\rm test}/dE_{\rm T}^{\rm test}} \sum_{i=1}^{N_{\rm jet}^{\rm test}} \frac{dN_{\rm jet,i}^{\rm nbr}}{dE_{\rm T}^{\rm test}} (E_{\rm T}^{\rm test}, E_{\rm T,min}^{\rm nbr}, \Delta R)
$$

… the rate of neighboring jets that accompany a given test jet.

 \cdot R_{∆R} evaluated also differentially in neighboring jet Et

- … which are the E_T spectra of the third (or nth) jet given the test jet E_T
- To quantify the centrality dependence the central-to-peripheral ratios, $\rho(R_{\rm AR})$, also evaluated

- 3 jet sizes: d=0.2, 0.3, and 0.4 jets (change in the notation for this analysis "d" is the jet size parameter "R")
- •5 bins in the test jet E_T
- •4 bins in the neighboring jet E_T
- Four centrality bins: 0 10% 20% 40% 80%
- The size of the annulus: $\Delta R_{min} < \Delta R < 1.6$, where
	- $\Delta R_{min} = 0.8$ (d=0.4 jet)
	- $\Delta R_{min} = 0.6$ (d=0.3 jets)
	- $\Delta R_{min} = 0.5$ (d=0.2 jets)
- Measurement restricted over the range with well understood detector response, $|n| < 2.8$ = test jet cut of $|n| < 1.2$

Important experimental corrections

- Fake jets rejected using standard procedure of matching to clusters and track jets.
- Jet E_T corrected to reduce the effect of up-feeding due to finite JER.
- Contribution from two independent hard processes subtracted using the estimate of the rate from the MC to data overlay.
- Distributions need to be further corrected, e.g. for the case when two neighboring jets overlap
- Bin-by-bin correction applied to correct for:
	- effects due to finite jet energy resolution and jet reconstruction efficiency
	- migration in/out of the jet annulus due to finite jet position resolution

Efficiency and bin-by-bin corrections

Correction flow

Unfolded = $k *$ (Raw – Combinatorics)

- Monotonic increase with increasing test jet E_T (shape already known **from pp D0).**
- **Clear trends of suppression with increasing centrality.**

R_{AR} – neighboring jet E_T dependence

Central to peripheral ratio of R_{∆R} as a function of <u>neighboring jet E</u>_T. **Decrease of suppression with increasing jet** E_T **... may be expected for the** configuration of magnitude of neighboring jet E_T approaching the magnitude **of test jet E**T **(the per-test jet normalization in the R**∆**^R effectively removes the suppression).**

- Jet fragmentation evaluated in terms of $D(z)$ and $D(p_T)$ distributions and their central-to-peripheral ratio for three different jet radii, six different centrality bins.
- A modest but significant modification of fragmentation seen: an enhancement in fragment yield in central collisions for z < 0.04, a reduction in fragment yield for $0.04 < z < 0.25$ and an enhancement in the fragment yield for $z > 0.25$.
- Neighboring jet rates, $R_{\Delta R}$, evaluated as a function of test jet E_T and neighboring jet E_T for three different jet radii and four centrality bins.
- Significant suppression seen in central collisions for the configuration when neighboring jet E_T is different from test jet E_T which has similar trends as the suppression in inclusive jets.
- Indication of the centrality dependence of the power-law index of neighboring E_T spectra.

Backup slides

Jet RAA

Improvements in jet reconstruction over the first analyses

- The use of MC to real data overlay
- Improvements in the UE subtraction
- Improvements in the determination of the JES uncertainty:
	- Studying the response as a function of parton flavor and parton showers from different MC generators
	- Determine the response and uncertainty based on in-situ studies of gamma-jet and Z-jet correlations using in full 8 TeV pp data
	- Use the fragmentation measurement to judge the impact of modified fragmentation on JES uncertainty

Unfolding

- Correction from the reconstructed level to the truth level.
- Corrects mainly for jet energy and track momentum resolution.
- Singular value decomposition technique implemented in RooUnfold package used.

Unfolding

- Correction from the reconstructed level to the truth level.
- Corrects mainly for jet energy and track momentum resolution.
- Singular value decomposition technique implemented in RooUnfold package used.

Ratios of D(ξ)

$D(z)$ and $D(pt)$ for R=0.2

 $R_{D(z)}$ for R=0.3

 $R_{D(Z)}$ for R=0.2

 $R_{D(pt)}$ for R=0.3

 $R_{D(pt)}$ for R=0.2

Systematic uncertainties for the neighboring jet measurement

Systematic uncertainties for the neighboring jet measurement

