Ian Bird
WLCG Networking workshop
CERN, 10th February 2014

WLCG Overview

10 February 2014 lan.Bird@cern.ch

High level view from WLCG

- Networking is working very well
- □ There is no perceived problem
- Indeed the intention is to make more and better use of the networks to more effectively manage data and storage resources

LHCOPN

- □ The LHCOPN guarantees the raw data export traffic between Tier 0 to the Tier 1s
 - Necessary to fulfil the requirements of the MoU for the Tier 1s and the data export
 - No desire or reason to change this
 - New Tier 1s should also fulfil this requirement and join the LHCOPN

(Aside – the MoU requirement:)

- 99% availability averaged over a year to accept raw data
 - This is essentially a 3.5 day/year allowed downtime;
 and is achieved to all Tier 1s

10 February 2014 lan.Bird@cern.ch

Inter-Tier traffic

- Originally LHCOne was proposed as a way to address a perceived problem
- Today many countries have more than adequate bandwidth internally that LHCOne is not needed
 - Often using LHCone may incur additional costs
- Some countries find it a useful concept
 - May be a political need helps to get funding and better bandwidth
 - Some NRENs like to segregate LHC from other science traffic
- Therefore: essentially a national (NREN) decision driven by national needs and funding scenario
- From WLCG point of view: keep LHCOne structure in place for those countries that find it useful
 - Address operational models

perfSONAR deployment

- WLCG agreed on perfSONAR as the core toolkit for network monitoring in the infrastructure
 - > Strong push came from experiments
- Deployment of perfSONAR has been (and still is) sometimes problematic
 - > Some sites refuse to install it at all
 - > Some sites still run very old versions
- perfSONAR needs to be treated as any other service in WLCG
 - ➤ Including the level of commitment in installing, configuring, operating it.

Evolution of requirements

Higher trigger (data) rates driven by physics needs

Based on understanding of likely LHC parameters;

Foreseen technology evolution (CPU, disk, tape)

Experiments work hard to fit within constant budget scenario

Estimated evolution of requirements 2015-2017

2008-2013: Actual deployed capacity

Line: extrapolation of 2008-2012 actual resources

Curves: expected potential growth of technology with a constant budget (see next)

CPU: 20% yearly growth Disk: 15% yearly growth

A lot more to come ...

	2009	Start of LHC - 2009: √s = 900 GeV	
	2010	Run 1: $\sqrt{s} = 7-8$ TeV, L = 2-7 x 10 ³³ cm ⁻² s ⁻¹	
11	2011	Bunch spacing: 75/50/25 ns (25 ns tests 2011; 2012)	~25 fb ⁻¹
	2012		
	2013	LHC shutdown to prepare for design energy and nominal luminosity	
	2014	Run 2: $\sqrt{s} = 13-14$ TeV, L = 1 x 10^{34} cm ⁻² s ⁻¹	
	2016	Bunch spacing: 25 ns	>50 fb ⁻¹
	2017		\ //
7	2018	Injector and LHC Phase-I upgrade to go to ultimate luminosity	
	2019	Run 3: √s = 14 TeV, L = 2 x 10 ³⁴ cm ⁻² s ⁻¹	
	2020	Bunch spacing: 25 ns	~300 fb ⁻¹
	2021		
	2022	High-luminosity LHC (<i>HL-LHC</i>), crab cavities, lumi levelling,	$\tilde{\omega}$
	2023	Run 4: √s = 14 TeV, L = 5 x 10 ³⁴ cm ⁻² s ⁻¹	
5	2030	Bunch spacing: 25 ns	~3000 fb ⁻¹
		Sconaria shown for proton proton runs of ATLAS and CMS	∫ L dt
	STATE OF	Scenaria shown for proton-proton runs of ATLAS and CMS,	

LHCb and Alice follow different strategies.

LHCb & ALICE @ Run 3

Reconstruction +
Compression

50 kHz (1.5 MB/event)

Storage

75 GB/s

ATLAS & CMS @ Run 4

Level 1

HLT

5-10 kHz (2MB/event)

Storage

Level 1

HLT

10 kHz (4MB/event)

Storage

40 GB/s

Data: Outlook for HL-LHC

- Very rough estimate of a new RAW data per year of running using a simple extrapolation of current data volume scaled by the output rates.
 - To be added: derived data (ESD, AOD), simulation, user data...

CPU: Online + Offline Moore's law limit

 Very rough estimate of new CPU requirements for online and offline processing per year of data taking using a simple extrapolation of current requirements scaled by the number of events.

Little headroom left, we must work on improving the performance.

Conclusions

- Networking has been shown to be a very stable and functional service for WLCG
 - Has enabled us to significantly evolve the computing models
- Networking is key for the future evolution of WLCG
- Bandwidths needed will fit within the expected evolution of technology (given 25 year history), even on the HL-LHC timescale
- No reason to change to current way of using LHCOPN or the general Tier-Tier connectivity
- □ The real problem to be addressed is the connectivity to Eastern Europe, Asia, Africa, etc.

10 February 2014 lan.Bird@cern.ch

12