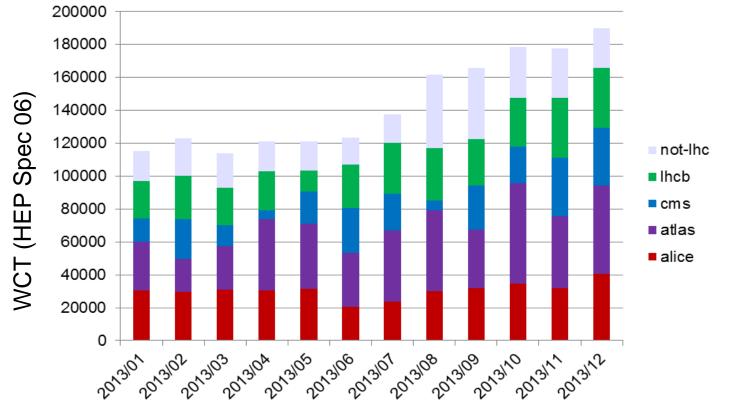
INFN TIER1 (IT-INFN-CNAF) "Concerns from sites" Session


LHC OPN/ONE

"Networking for WLCG" Workshop CERN, 10-2-2014 Stefano Zani

_stefano.zani@cnaf.infn.it

INFN tier1 Experiment activity

 CNAF is a Tier1 center for all the LHC experiments and provides resources to many (20) other experiments like: AMS, ARGO, AUGER, Borexino, CDF, Pamela, Virgo, Xenon...

CPU Usage @TIER1 (2013)

INFN TIER1

Resources Today and after LS1(pledge 2015)

Total computing resources

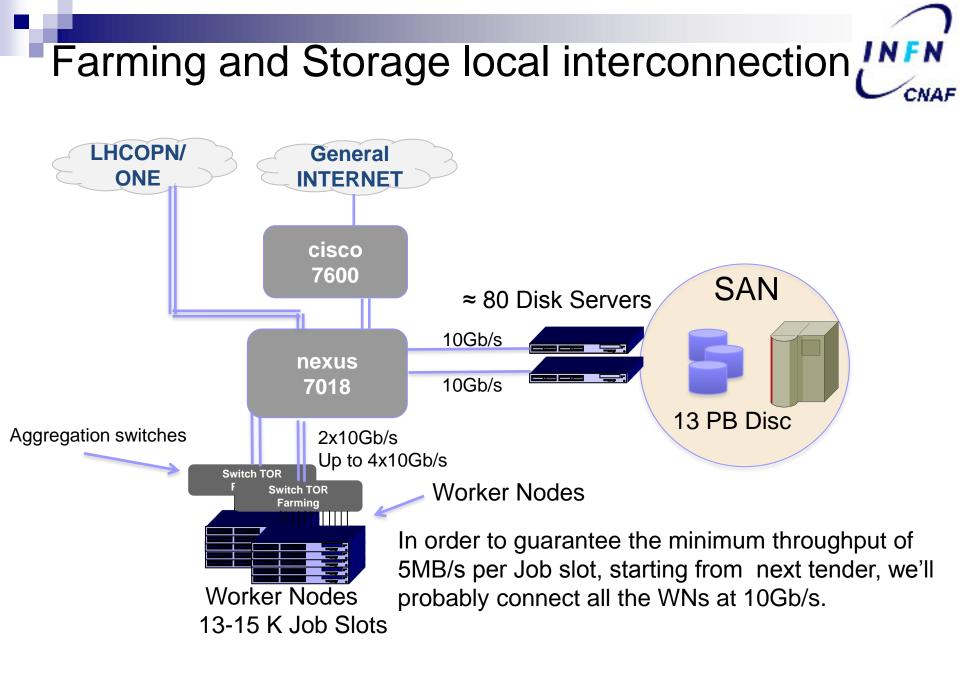
195K HepSpec-06 (17K job slots)

Computing resources for LHC

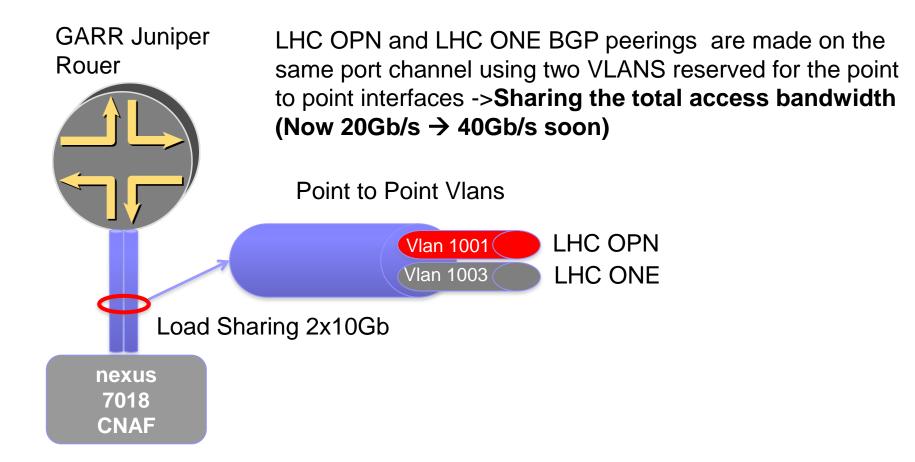
- Current: 100KHepSpec-06,10000 Job Slot (pledged 2014)
- After LS1: 130KHepSpec-06, ~13000 job slots (Pledged 2015)

Storage Resources for LHC

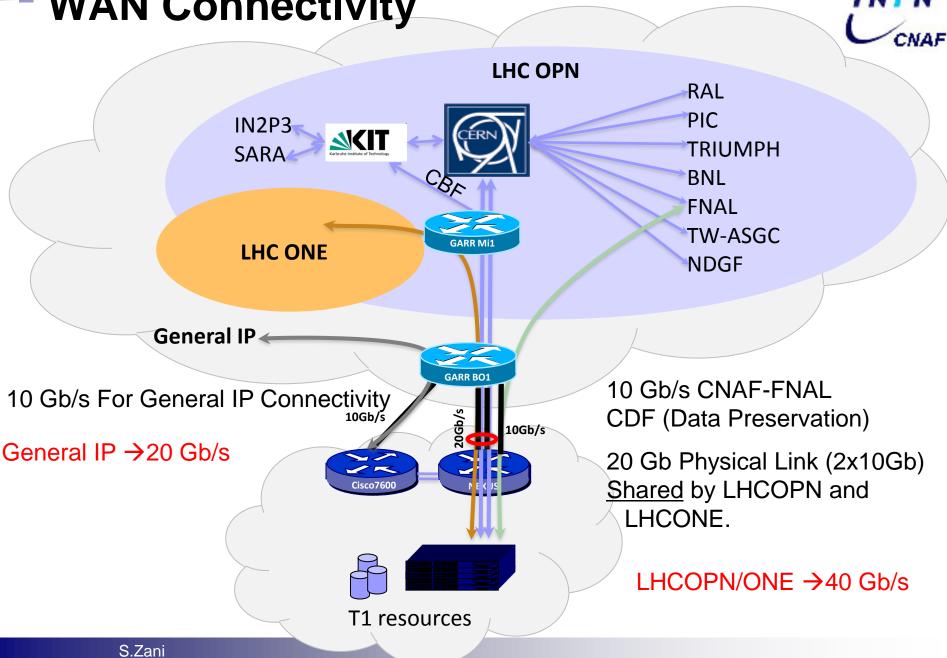
- Curent 11 PB Disk and 16 PB Tape (Pledged 2014)
- After LS1: 13 PB Disk and 24 PB Tape (Pledged 2015)

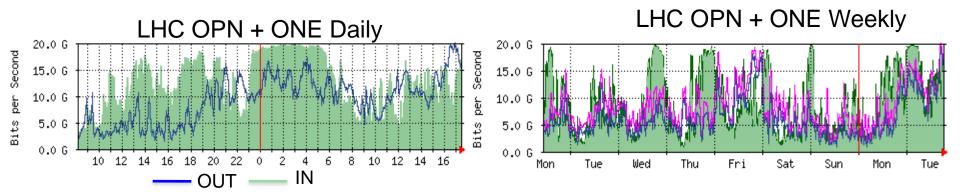

Pledged numbers doesn't suggest any big increment of computing resources in 2015 (20-30%).

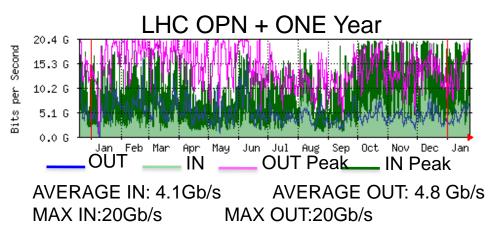
(TwinSquare) 4 mainbords in 2 U (24Cores).



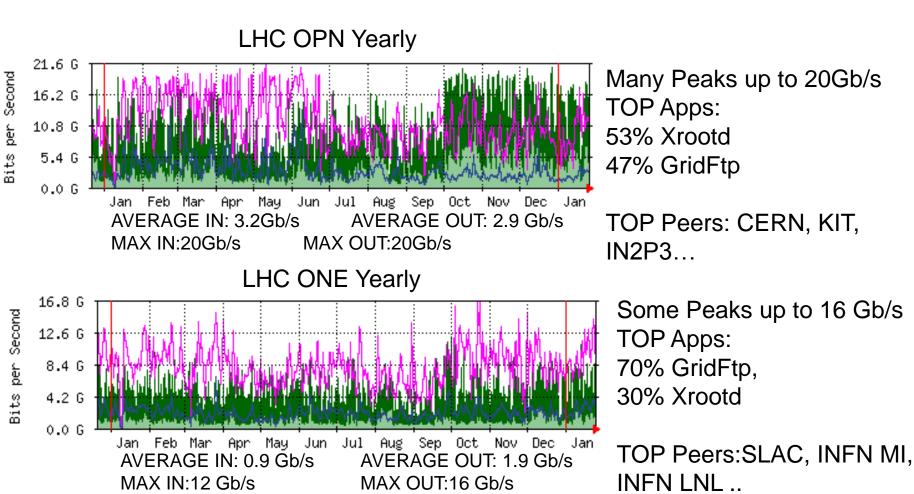
connected to a SAN




LHC OPN and ONE access link



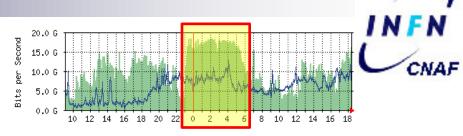
WAN Connectivity


WAN LHC total utilization (LHC OPN+LHCONE)

We are observing many peaks at the nominal maximum speed of the link.

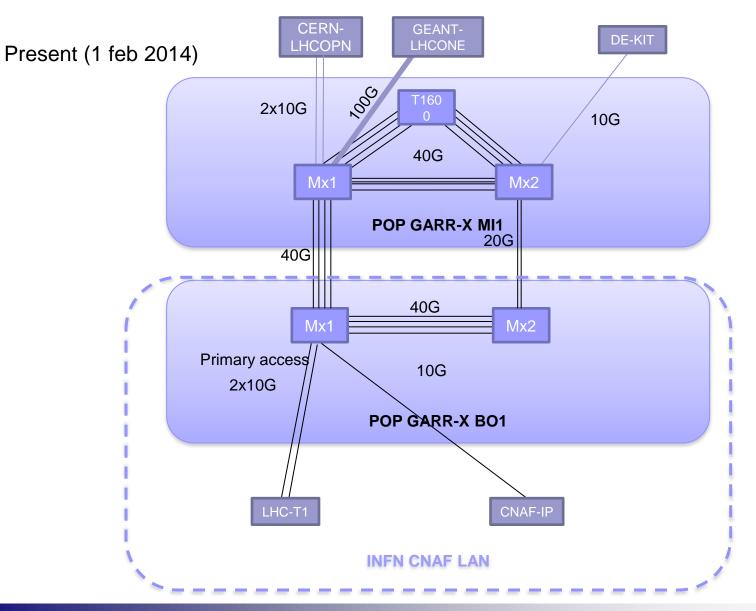
LHC-OPN vs LHCONE

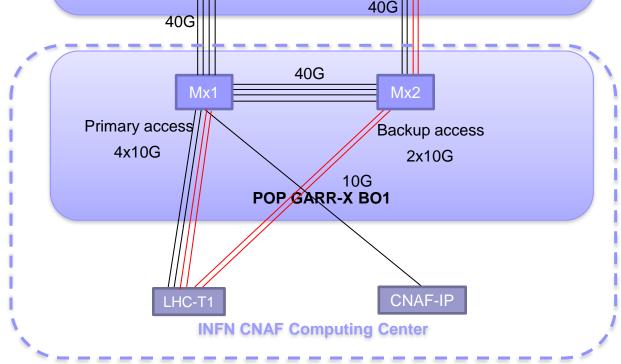
LHOPN traffic it is significantly higher than traffic on LHC ONE. The most relevant peaks of traffic are mainly on LHC-OPN routes.


"Analysis of a peak" (LHC-OPN Link)

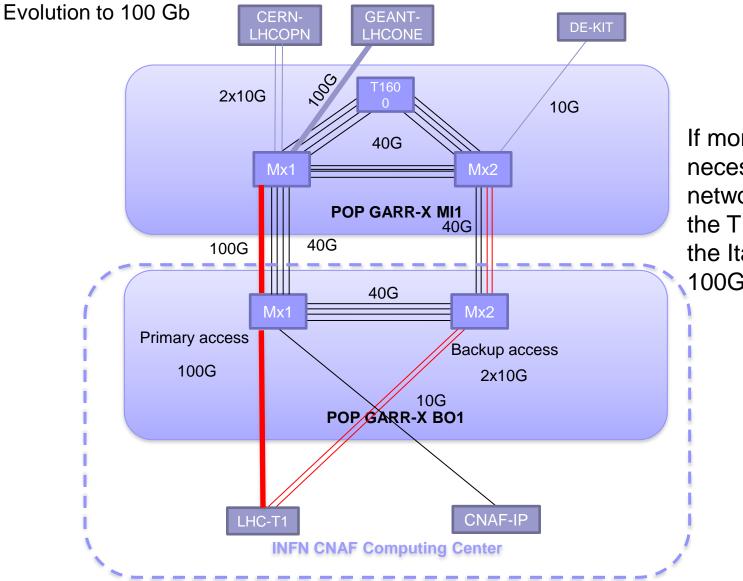
ppli	cation Application Groups	Protocol Distribution 📰 Showing 1 to 10 🗊 View per page 10 🔹
-	Application	% of total traffic
-	xrootd-1095	84%
-	GridFTP	14%
-	xrootd-1094	1%
-	Unknown_App [Show Ports]	<1%
-	http	<1%
-	lorica-in	<1%
-	irdmi	<1%
-	pcsync-https	<1%
-	https	<1%
-	pcsync-http	<1%

In this case the application using most of the bandwidth was Xrootd


"Analysis of a peak" (LHC-OPN Link)


Show IP Group by	None 👻					Showing 1 to 50	View per page 50 👻
Src IP	Dst IP	Application	Port	Protocol	DSCP	Traffic(967.57 GB)	Percent
f01-070-138-e.gridka.de	ds-202-08-15.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	40.74 GB	4%
f01-070-128-e.gridka.de	ds-202-08-13.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	36.32 GB	4%
f01-070-128-e.gridka.de	ds-202-08-15.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	30.72 GB	3%
f01-070-122-e.gridka.de	ds-202-08-15.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	28.06 GB	3%
f01-070-130-e.gridka.de	ds-202-08-15.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	24.46 GB	3%
f01-070-122-e.gridka.de	ds-202-08-13.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	23.3 GB	2%
f01-070-138-e.gridka.de	ds-202-08-13.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	19.77 GB	2%
f01-070-130-e.gridka.de	ds-202-08-13.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	12.05 GB	1%
f01-081-126-e.gridka.de	wn-206-07-21-04-a.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.95 GB	<1%
lxfsrf09c01.cern.ch	wn-206-01-05-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.74 GB	<1%
lxfsrd37a02.cern.ch	wn-206-01-27-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.39 GB	<1%
lxfsrd14c03.cern.ch	wn-205-10-06-01-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.37 GB	<1%
lxfsrd12c03.cern.ch	wn-206-01-02-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.36 GB	<1%
lxfsrk54c03.cern.ch	wn-206-04-11-01-a.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.32 GB	<1%
lxfsrd38c03.cern.ch	wn-205-10-34-01-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.31 GB	<1%
lxfsrd39a01.cern.ch	wn-204-11-05-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.24 GB	<1%
lxfsre08b06.cern.ch	wn-205-03-22-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.23 GB	<1%
lxfsrf15c07.cern.ch	wn-205-01-04-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.22 GB	<1%
lxfsrd06c01.cern.ch	wn-205-03-27-01-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.21 GB	<1%
lxfsrd56c03.cern.ch	wn-204-13-27-01-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.2 GB	<1%
lxfsrf09c01.cern.ch	wn-200-04-09-02-a.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.2 GB	<1%
lxfsre48c01.cern.ch	wn-200-01-05-01-a.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.19 GB	<1%
lxfsrd38c03.cern.ch	wn-204-03-33-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.18 GB	<1%
lxfsrk36c03.cern.ch	wn-204-13-07-02-b.cr.cnaf.infn.it	xrootd-1095	1095	тср	Default	2.18 GB	<1%
lxfsra28a07.cern.ch	wn-204-08-08-02-b.cr.cnaf.infn.it	xrootd-1095	1095	TCP	Default	2.18 GB	<1%

Looking the Source IPs and Destination IPs Xrootd: From KIT \rightarrow CNAF (ALICE Xrootd Servers) Xrootd: From CERN \rightarrow CNAF (Worker Nodes)


T1 WAN connection GARR side (NOW)

N T1 WAN connection GARR side Next Step CNAF CERN-DE-KIT LHCOPN LHCONE Evolution (Q1/Q2 2014) 2000 2x10G 10G 40G Mx1 Mx2 **POP GARR-X MI** 40G 40G

Next Steps in CNAF WAN Connectivity

If more bandwidth is necessary, GARR-X network can connect the TIER1 and part of the Italian TIER2s at 100Gb/s.

CNAF views and general concerns

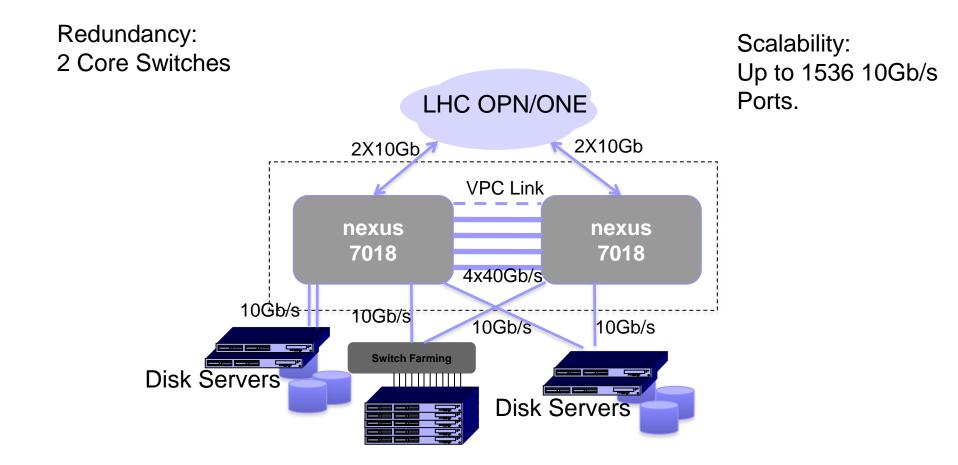
- We are not experiencing real WAN Network problems → Experiments are using the center and the network I/O seems to be good even during short periods of bandwidth saturation... But we are not in data taking..
- Concern: Direct access to data over WAN, (for example analysis traffic) can potentially "<u>Saturate</u>" any WAN link → NEED TO UNDERSTAND BETTER THE DATA MOVEMENT OR ACCESS MODEL in order to provide bandwidth where it is necessary and "protect" the essential connectivity resources.

Open Questions

- Do we keep LHCOPN? Do we change it ?
- Do we keep the LHCONE L3VPN? Do we change it?
 - The answer to these questions is dependent on the role of the TIERs in next computing models.
 - If T0-T1 guaranteed bandwidth during data taking is still mandatory → We should keep LHCOPN (or part of it) in order to have a "Better control" on the most relevant traffic paths and to have a faster troubleshooting procedures in case of network problems.
 - If the data flows will be more and more distributed as a full mesh between Tiers → a L3 approach on over provisioned resources dedicated to LHC (like LHCONE VRF) could be the best matching solution.

Services and Tools needed ?

- Flow analysis tools (Netflow/Sflow analizers) have to be improved by network admins at site level.
- Services (like for example FTS) used to "Optimize and tune" the main data transfers (and flows) from and to a site could be very useful to the experiments and the sites too ...


Thank You!

Backup Slides

Internal network possible evolution

12 Juniper Ex4200 (48x1Gb/s+2x10Gbs Uplink)

14 Cisco 4948 (48x1Gb/s+4x10Gbs Uplink)

20 Cisco 3032 – DELL Blade

4 DELL Power Connect 7048 (48x1Gb/s+4x10Gb/s)

S.Zani

More than **100 TOR switches** (About 4800 Gigabit Ports and 120 10Gb/s Ports)

24 10Gb/s Ports 96 Gigabit ports **Cisco 7606** (General IP WAN access router)

Extreme Networks BD8810 (Tier1 Concentrator)

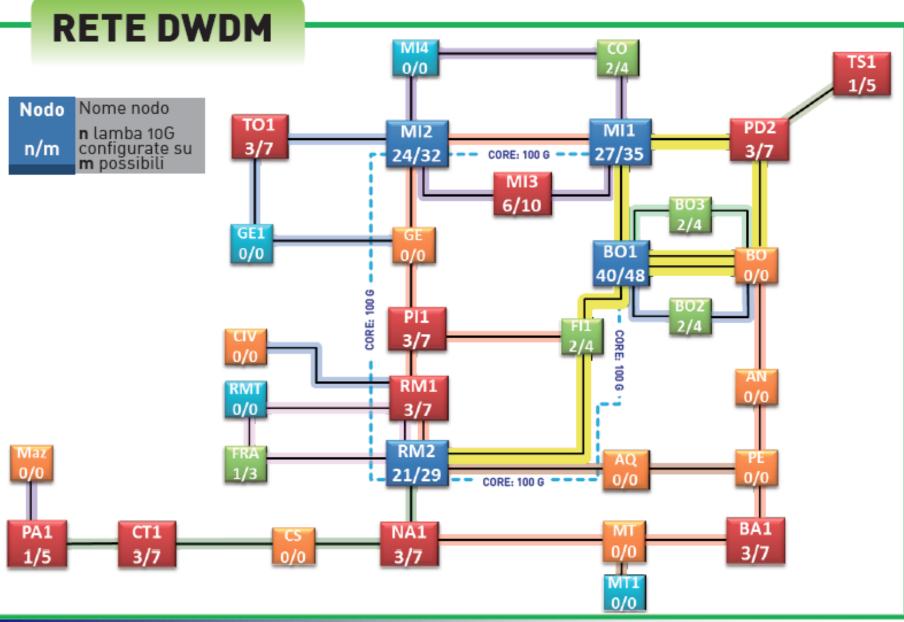
4 Core Switch Routers (fully redundant)

CNAF Network Devices

Cisco Nexus 7018 (TIER1 Core Switch and WAN Access Router)

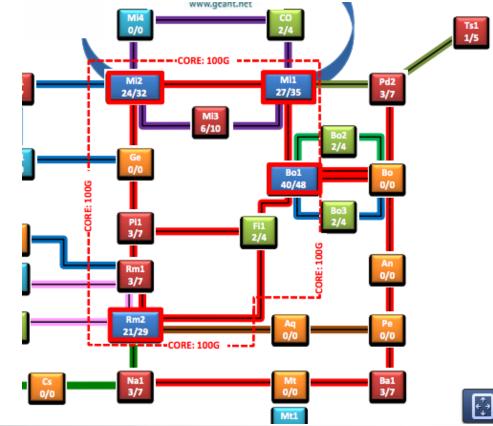
208 10Gb/s Ports

Cisco 6506 (Offices core switch)


192 Gigabit ports

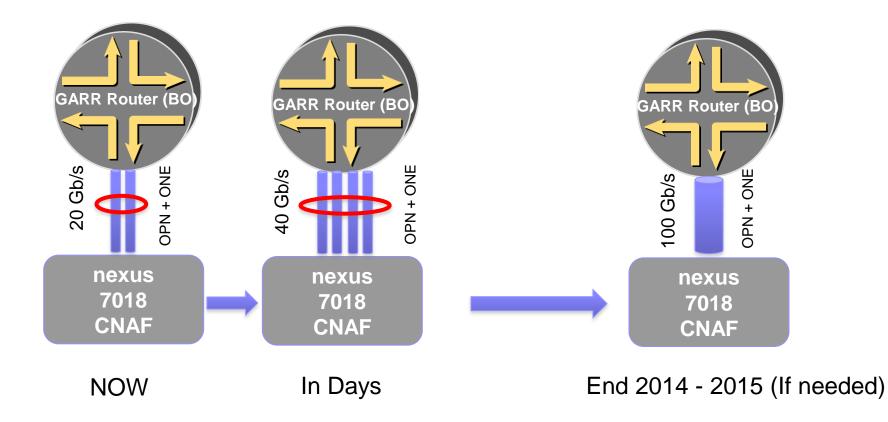
GARR-X: Topologia della rete trasmissiva, FN

Le sedi INFN in GARR-X


S.Zani

The GARR Bo1 POP today can activate up to 160 Lambdas and it is possible to activate the first 100Gb/s links.

GARR-POP



dianet 4 05:36 Show Pr al: 46.82 TB)	rotocol Distribution Showing 1 to 10 View per page 10 % of total traffic 84% 14% 1% <1% <1%
al: 46.82 TB)	% of total traffic 84% 14% 1% <1%
	84% 14% 14% 1% 1% 1% 1%
	14% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%
	1% <1%
	<1%
	<1%
	<1%
	<1%
	<1%
	<1%
	<1%
Showing 1 to 10	
T1-LHCOPN	
l	135

Next Steps in CNAF WAN Connectivity

GARR Backbone is already connected to GEANT with 2 x 100Gb/s links.

If more bandwidth will be necessary, GARR-X network can connect the TIER1 and part of the Italian TIER2s at 100Gb/s.

