FNAL Site Perspective on LHCOPN & LHCONE Future Directions

Phil DeMar (FNAL)
demar@fnal.gov
February 10, 2014

FNAL WAN Basics

- Aggregate WAN b/w:
 - 8x10GE migrating to 100GE + 3x10GE
 - All but 2x10GE allocated for "science data" movement
- LHCOPN = ~17Gb/s
 - 2x8.6Gb/s with addtl 3Gb/s for backup
 - Subjective evaluation: current b/w is adequate
- LHCONE = 10Gb/s
 - Subjective evaluation: current b/w is adequate
- E2E data circuits:
 - With 6 of 7 US T2s
 - Guaranteed 1Gb/sw/ scavenge to 10Gb/s
 - Routinely peak at 8-9Gb/s

FNAL WAN Security Model

- FNAL does <u>not</u> have a site firewall
- Site security based on wide spectrum of controls
 - Strong auth., vulnerability scanning, ACLs, IPS, web proxy, etc
- By default, science data must pass thru perimeter controls
- Bypass exception:
 - "Known traffic from well-managed systems at trusted sites"
 - Exception based on risk analysis and acceptable residual risk
 - Bypass implementation = policy routing ACLs on the border
- LHCOPN & LHCONE traffic generally via policy route ACLs
- No reliance on security controls of external networks
 - Added layer protection is nice, but not essential

FNAL Tier-1 WAN Data Path(s) Today

- CMS Tier-1 integrated into campus network
- Routed IP traffic to T1 goes thru border routers
 - Bypass available for identified traffic
 - Security controls on the rest
- Separate border router for science data paths:
 - LHCOPN & LHCONE
 - E2E circuits

Bypass for Science Data Networks

- Internal policy-based routing (PBR) creates bypass path
- Incoming traffic not in PBR tables forwarded to border router:
 - Still gets into the Tier1
 - But passes through security controls
 - Also creates WAN path asymmetry
 - · May cause firewall problem on remote end
 - Haven't run into actual cases of this yet
- Flow data monitored for non-bypass traffic from science data paths

Coming Soon: New Perimeter Architecture

- 100GE costs necessitate consolidating bypass router functions into border & backup border routers
 - Actively working on 2x100GE configuration
- Expect to continue efforts to separate out science data:
 - But using virtual separation technologies, not separate physical infrastructure

Tier-1 Perspective(s) - I

- T0 → T1 data movement (LHCOPN):
 - Raw data movement should continue to have "preferred handling"
 - But doesn't need dedicated b/w (LHCOPN isn't a distributed DAQ)
 - Goal is 48hrs to tape
 - Even for upcoming run, 10Gb/s would be more than sufficient...
- T1 ←→ T1 data movement (LHCOPN):
 - No "preferred handling" needs, just "adequate" b/w
 - Currently works well soaking up available LHCOPN b/w
 - Large flows very intermittent & not latency sensitive
- T1 ←→ T2 data movement (circuits, LHCONE, other)
 - No "preferred handling" needs, just "adequate" b/w
 - Circuits (static) to US T2s work very well
 - LHCONE & general R&E network paths to T2s vary considerably

Tier-1 Perspective(s) - II

- Potential changes to LHCOPN:
 - Keep "preferred handling"; don't care about implementation
 - Would like to have any changes implemented by 1/1/15
- Building network-awareness into applications:
 - Willing to consider, if necessary...
 - But concerns about:
 - Troubleshooting would become extremely difficult
 - Ongoing maintenance another concern
 - For now, having capacious b/w available is working fine
- On/over the horizon WAN concerns
 - Impact of potential consolidation of tape archiving
 - How commercial cloud services would be supported
 - Firewall performance (100GE) issues at other sites

Summary

- Plan to keep current model of separating science data movement from general network traffic
 - Virtualized separation will be necessary (at least internally...)
- Would prefer to see LHC data carried on "LHC" networks
 - But not essential; LHC traffic on R&E routed paths will also be supported (ie., get bypass handling service)
- LHCOPN function should be preserved:
 - Implementation should evolve with technology
 - T2s on the LHCOPN?
 - This is not what LHCOPN was intended for
 - This is what LHCONE & general R&E networks are for
 - Don't want to act as an ISP for T2s using LHCOPN
 - T1 traffic on LHCOPN has worked fine, but could be moved

Questions

