
Common performance issues in
threaded code

David Levinthal Apr 1

Common performance issues associated
with threaded code

Lots of industry and academic experience with
performance and threading
A few of the more common ones and their detection

● Synchronization
○ false sharing

● Concurrency
○ load balancing
○ interupt thrashing

● Thread library overhead
○ OpenMP issue

Synchronization

thread A
virtual
memory

thread B
virtual
memory

Shared read

shared write requires
synchronization

Controlling race conditions
Lock gated access is the normal method to
avoid race conditions with modifying shared
data

● Avoid split line locks at all cost
● Balance lock “granularity”

○ HLE/TSX/HW supported transactional memory can assist
with common locks controlling non overlapping data
■ HSW/Intel and IBM

● Thread can go idle when unable to acquire lock

Existing HW event tools
VTune/Amplifier has time line displays/thread
and critical path analysis
perf report has a recently added address
analysis (I have not used this)
PTU (EOL’d but may still be available) has very
sophisticated address analysis

False sharing
Loads/stores to cachelines with fields that get
modified by other threads

But with no overlap
Store cause line to go to exclusive state and
then go to modified (M mesi state)
Subsequent load to such a line from another
thread causes a HITM (hit modified)

Identifying false sharing
Address analysis

● Use PEBS HITM and store events
○ mem_load_uops_retired:llc_miss_remote_hitm
○ mem_uops_retired:any_store

● HSW captures virtual address for all memory operation
● Compare addresses and sizes
● Identify non overlapping loads and stores from different threads
● See the old PTU tool for an example
● PERF recently added such a feature based on the load latency

event
● And yes..one of these days I wll add this to Gooda :-)

Concurrency issues
Load balancing in data decomposition

Threads going idle may not be the problem
Busy threads may have too much work

Broadcast event interupt on uncore clock
generate PMI on every HW thread
random sampling of concurrent execution

Context thrashing
Exclusive locks can cause context switches
to the idle state (1 thread /HT)
Need to check context switch rate and
initial/final thread
Needs kernel instrumentation
note: here idle thread denotes a problem

Summary
Large variety of performance bottlenecks
A problem signature may be good or bad for
the specific thread (ex: idle core)
Do not assume threading is more efficient than
process parallel

