Multi-processing in ROOT
Status and Plans

G. Ganis, CERN, PH-SFT

3% Annual Concurrency Forum Meeting
CERN, 2-3 April 2014

Multi-processing

* Another way to achieve parallelism
— Only one possible across machines
* Advantages

— Code encapsulation

— Heterogeneous usage
* From multi-core to multi-node

* Disadvantages
— Possible setup overhead

* Process launch, environment customization, ...

— Need to merge the results

Multi-processing in ROOT: PROOF

* Main goal: increase effective I/O bandwidth in
processing a dataset

— Exploiting embarrassing parallelism in the data

* Flexible target

— Potentially extremely large facilities
* Dedicated, Batch- or Cloud-managed
* PROOF-On-Demand, Virtual Analysis Facility

— Or large number of in-node cores
* PROOF-Lite

Outline

e Brief reminder

* Recent developments
— Dynamic workers
— Debugging, Benchmarking
— Merging

* Current plans

PROOF in a nutshell

 ROOT processes working concurrently
— Master-worker architecture

— Pull-architecture for work distribution

— Processes started via a dedicated daemon
e Communication via TCP sockets

PROOF-Lite in a nutshell

e ROOT client session acts as master

— Processes started from the shell (system)
 Communication via UNIX sockets

PROOF(-Lite) user interface

 Create the session
TProof::0pen(“url”)

e Set up the environment

TProof::Load(..)
TProof::EnablePackage(..), ..

* Run

TProof::Process(dataset, selector, ..)

TSelector

TProof: :DrawSelect (dataset, varexp, selection, ..)
TProof::Process(selector, .

* Interface with TChain \

Non data driven

TChain: :SetProof ()

April 1st, 2014 Multi-Processing in ROOT, G. Ganis

(More or less) recent developments

e Setup evolution
— Solving stability issues

* Exploiting master-worker interactivity
— Dynamic workers

e Usability, performance, debugging

— Access to dataset meta-information
* Interface with experiment catalogues
— Output handling
* Merging, file saving
— TProofBench
— Interface with igprof, valgrind

Setup evolution

e Setup based on Proof-on-Demand (PoD)

— Plug-in interface to Resource Management Systems
e HTCondor, LSF, PBS, ...
* Dedicated/static resources via ‘ssh’

— Delegates authentication, sandboxing, priorities
e Virtual Analysis Facility
— Proof-As-A-Service on cloud-managed resources

— Dynamic scale-up/down
— See D. Berzano talk at CHEP 2013

& PROOF is cloud-aware

Dynamic addition of workers
new workers can join and offload a running process

initially available i
bulk init \é“ Be

init new workers autoregister

deferred init

worker worker

init Q_
init 2
process
process
process
Dario.Berzano@cern.ch - PROOF as a Service on the Cloud - http://chep2013.org/contrib/308 7

April 1st, 2014 Multi-Processing in ROOT, G. Ganis

1000

800

Actual time to results [s]

600

400

200

PROOF with Dynamic Workers:

all job time spent in computing

(never idle,

PROOF dynamic workers

Grid batch jobs (ideal num. of workers)

PROOF pull and dynamic workers

Analytically derived from ENSEE—_—_—— I— i T\N— nE
actual startup latency E ' ' : '
measurements

Batch jobs: results collected only
when late workers are finished
(latencies and dead times)

5000 10000 15000 20000 25000 30000 35000
Total required computing time [s]

PROOF is up 30% more efficient

on the same computing resources by
design (analytical upper limit)

no latencies)

Dario.Berzano@cern.ch - PROOF as a Service on the Cloud - http://chep2013.org/contrib/308 10

April 1st, 2014

Multi-Processing in ROOT, G. Ganis 10

Merging issues

* Performance
— Serial phase at the end
* Limits scalability
 Resource requirements
— Scales with output size

— Large outputs are the norm
e 10000’s N-d histograms, big trees

— RAM, network issues, ...

Merging in PROOF

Mostly solutions to optimize resource utilization
Merge objs 1-by-1 (not N object in one go)

— Limit required RAM to twice the biggest object
* Recent optimizations on this (5.34/12+)

Merge via file
— Workers save to file, master runs TFileMerger
For TTree outputs

— Create metadata for transparent access (e.g. TChain)
* May optimize subsequent access

Parallel merging with submerges

 Submerger: faster worker promoted merger

* Helps improving performance with objects of
fixed size (e.g. histograms) WW

?.xx’"—x
Client master sub-mergers
O{/Ib(
<7 Worker n-2
2
K l,uu lllll -2
Worker n-1
tn

* Optimal number: ~Sqrt(# or workers)

TProofBench

S.Ryu, GG
_ _ ACAT 2011
CPU intensive

— : generation of random numbers, fill histos

— Cycle/s versus # of workers

1/0 intensive

- : read entry from a TTree + some filtering

— Mbytes/s versus # of workers/node or # of workers
- : reset RAM cache before each run
{Average, RMS} of 4 measurements / point

Max and average rate

— Average includes PROOF overhead
Can use custom TSelector and dataset

April 1st, 2014 Multi-Processing in ROOT, G. Ganis

28000
2 7000
36000
5000
4000
3000
2000
1000

Performances examples: PROOF-Lite

x10
= v MacBookPro i7 2.3 GHz
= CPU scaling .
i ’ * Hyperthreading kink visible
T I T e I
Number of workers

Q -

g 300; m External USB 3.0 /g/g
RAM ~ S SD: — A SSD main drive /g/ g

250 o RAM disk —
300 MB/s = e
.. 200F o
CPU limited - o
Ext USB 150; }/,
~100 MB/s 100 /_/-//-/-\-_
50; e
R SUNP S S S

4 5
Number of Workers

Performances examples: cloud

, x10° Google Compute Engine
8 500 480 cores, 60 nodes
> —
O _ ~Dll . _,,,.m-*“””
400—CPU: pure procesi:w 30 GB RAM / node
— s'I-Il—"
3001 , ...“.“___i,,_.-.-!!'!..".
: MA:"' Y CPU: including merging
200 "
- _N,,l‘i-':::::;.
100F Precon *
O s~ 20300 00 450
Number of workers
218000 ;
=160001 g
d 16 GB/S from RAM 140005 . ~
(1.8 TB RAM total) 12000 X
* 6 GB/s from storage 10000= 60 v 480
8000 -
(cold reads) sooor. ¥ . -
BO00 E-—rrr e "
2 000; i ‘ Parsislenldfsk.coldread
GG, S. Panitkin 0 b éNb;'fWké/é —
umber O orkers / core
CHEP 2013

April 1st, 2014 Multi-Processing in ROOT, G. Ganis

TProof::Open("user@host",

Entor cluster URL:
Jpeoctiaverzano@iocalhost 21001/
Enter session: [03 Getlogs info] o

-
-

Croose workers: Clear I - I

0 server-4436a906-27ac-47e1-8eec-ClfdTL
0.0 server-Se37Sas3-0e30-4162-b153-6592a
0.0(gprof pp) server-5e3175a3-0e90-4162-ot
01 server-5e375a3-0090-4162-br53-6532a
0.10gprof pp) server-5e3f75a3-0e9b-4162-b

0.2 server-dbfc0329-8¢86-4b70-a812-d14cci
0.20gprof pp) server-dbfc0329-8car-4bT0-a8
0.3 server-dbfc0329-8c6-4070-2812-014ccs
0.30gprofpp) server-dbic0329-8c8r-4b70-38
0.4 server-eeccbaec-5b43-43c3-3e73-Jbch
0.4(\gprof pp) server-eeccbasc-5p43-43c9-9
0.5 server-eeccbanc-5b43-43¢9-9073-Jbch
0.5(gprof.pp) server-eecchasc-5043-43¢9-9

38383388222222222?222883833825388885553525:5:’83&‘33

DOOCO0000000000000000000000000000000000000C0000000MM

9.
7.
6.
LB
7.
1.
1.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

2
»

|

Punction

TRandcm): :hndn(int) [23]
—ieee?S4_log (28)

coe (29)

@in (1)

Track rTrack (£loat) (zll

llm(llﬂti tloaté) E}l]

__leea?S4_sqrt [d44)

TIStorage: tIsOnMeap (voidr) [4%)

THath iSqrt (double) (23]

L]

41
Mtilmrul(llut tlocat) (20}
Ant_malloc [9%]
ﬂmmmllmmmﬁ%-i'l (&3]
TBite: :SetBithurber (unsigned int, bool) (53)
Tobject 1 TCBject () [¥9]
Track :rGetPt () const [48)
T™ath: :Sin(double) [30]
sqrt [37]
system (ul
TLockGuard: 1 “TlockGuard() (78]
TOLjArray 1At (int) conet [9%)
THath: :Log(double) (25)

(261
_anit [%9)
m;nﬂlul-tlllhm-:’d int) [108]

1PutOb) ec tW; (TCE)ect’, une. int) (=11

TProcessID: m-m;tmlmm mt) ul
ey’ (TWir [210)
J'LIOIZ (118)
ﬂx!vtrﬂablm;” int) (30)
TRefArray 1 1AddAtAndEspand (TOb)ect®. int) [58)
THath tMax (ant, int) [122]

Toject : 1SetUniquelD(unsigned int) [123)
TCollection: iGeatSizel) conet [1235)
Bvent::Build(int, int, fleat) [19)
TClcnesArray 1 iCiear (char conet®) (26
TObjArray: :AddAtAndExpand (TObject® . int) [68)
TClcnesArray : roparator[| (int) [94)
TOojArray 1 itncheckedAt (int) conet [140]
Tyect : :GetUniquelD({) const [141)

Thet : icperator=(Tobjectt) [32]
Track 1 iClesr (char conet®) [41]
Teeglollection: iChanged () [152)
Toject : TestBit (umsigned int) ccnst [183]
avlowwl [155)

Bvent : :Clear (char ccast*) [35)

TRite 1 iCiesr (char conet*) [30]

wiprinef (124

THath: rAbe (double) (168]

"igprof-pp");

When processing
finishes, special
IgProf logfiles appear

Same technique
used with Valgrind

IgProf is not needed

Unes: @ o [svemsg From[00 J[0 Swewatie[Gemontigog sawe] _Close |
e Faw| I invertmaten I 1 3 ppe command

on the client!

Dario.Berzano@cern.ch - Integration of IgProf in PROOF (with a real life example) 4

April 1st, 2014 Multi-Processing in ROOT, G. Ganis 17

Current plans

* Improving merging
* I[mproving usability

Merging during run

Exploit Master-Worker interactivity

Master collects results from workers during run
and creates directly the final objects

For trees or alike objects (size ~ N)

— Integrate Philippe’s multi-producer/consumer
technology

— PROOF is an ideal application case

For histograms or alike objects (size ™~ fixed)

— Stream buffers of entries to master
» Buffering already exists for automatic bin range mode

— May need new interface for general application

Improving usability

Package management
— Versioning, distribution, default makefiles

Transparency
— Re-usage of TTree code, e.g. for Drawing
— Automatic switch to PROOF-Lite on desktops

Simplified interface for user code
— Ideally usable in a multi-threaded environment

Optimizations for math calculations
— E.g. reuse same setup for multiple calculations

Use of fork in PROOF-Lite

* Improve usability (environment setting) and
resource utilization
* |dea is to try forking the client ROOT session

— Need to evaluate issues related to components
loaded but not need on workers (e.g. graphics ...)

Summary

* Multi-processing in ROOT means PROOF

* Consolidated technology to efficiently operate

— Large facilities (clouds)
* PROOF-As-A-Service

— Multi-cores

* Continue effort to improve usability and
performances

