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Multi-processing

* Another way to achieve parallelism
— Only one possible across machines
* Advantages

— Code encapsulation

— Heterogeneous usage
* From multi-core to multi-node

* Disadvantages
— Possible setup overhead

* Process launch, environment customization, ...

— Need to merge the results



Multi-processing in ROOT: PROOF

* Main goal: increase effective I/O bandwidth in
processing a dataset

— Exploiting embarrassing parallelism in the data

* Flexible target

— Potentially extremely large facilities
* Dedicated, Batch- or Cloud-managed
* PROOF-On-Demand, Virtual Analysis Facility

— Or large number of in-node cores
* PROOF-Lite



Outline

e Brief reminder

* Recent developments
— Dynamic workers
— Debugging, Benchmarking
— Merging

* Current plans



PROOF in a nutshell

 ROOT processes working concurrently
— Master-worker architecture

— Pull-architecture for work distribution

— Processes started via a dedicated daemon
e Communication via TCP sockets



PROOF-Lite in a nutshell

e ROOT client session acts as master

— Processes started from the shell (system)
 Communication via UNIX sockets



PROOF(-Lite) user interface

 Create the session
TProof::0pen(“url”)

e Set up the environment

TProof::Load(..)
TProof::EnablePackage(..), ..

* Run

TProof::Process(dataset, selector, ..)

TSelector

TProof: :DrawSelect (dataset, varexp, selection, ..)
TProof::Process(selector, .

* Interface with TChain \

Non data driven

TChain: :SetProof ()
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(More or less) recent developments

e Setup evolution
— Solving stability issues

* Exploiting master-worker interactivity
— Dynamic workers

e Usability, performance, debugging

— Access to dataset meta-information
* Interface with experiment catalogues
— Output handling
* Merging, file saving
— TProofBench
— Interface with igprof, valgrind



Setup evolution

e Setup based on Proof-on-Demand (PoD)

— Plug-in interface to Resource Management Systems
e HTCondor, LSF, PBS, ...
* Dedicated/static resources via ‘ssh’

— Delegates authentication, sandboxing, priorities
e Virtual Analysis Facility
— Proof-As-A-Service on cloud-managed resources

— Dynamic scale-up/down
— See D. Berzano talk at CHEP 2013



& PROOF is cloud-aware

Dynamic addition of workers
new workers can join and offload a running process

initially available i
bulk init \é“ Be

init new workers autoregister

deferred init

worker worker

init Q_
init 2
process
process
process
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PROOF with Dynamic Workers:

all job time spent in computing

(never idle,

PROOF dynamic workers

Grid batch jobs (ideal num. of workers)

PROOF pull and dynamic workers

Analytically derived from ENSEE—_—_—— I— i T\N— nE
actual startup latency E ' ' : '
measurements

Batch jobs: results collected only
when late workers are finished
(latencies and dead times)

5000 10000 15000 20000 25000 30000 35000
Total required computing time [s]

PROOF is up 30% more efficient

on the same computing resources by
design (analytical upper limit)

no latencies)
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Merging issues

* Performance
— Serial phase at the end
* Limits scalability
 Resource requirements
— Scales with output size

— Large outputs are the norm
e 10000’s N-d histograms, big trees

— RAM, network issues, ...



Merging in PROOF

Mostly solutions to optimize resource utilization
Merge objs 1-by-1 (not N object in one go)

— Limit required RAM to twice the biggest object
* Recent optimizations on this (5.34/12+)

Merge via file
— Workers save to file, master runs TFileMerger
For TTree outputs

— Create metadata for transparent access (e.g. TChain)
* May optimize subsequent access



Parallel merging with submerges

 Submerger: faster worker promoted merger

* Helps improving performance with objects of
fixed size (e.g. histograms) WW

?.xx’"—x
Client master sub-mergers
O{/Ib(
<7 Worker n-2
2
K l,uu lllll -2
Worker n-1
tn

* Optimal number: ~Sqrt(# or workers)




TProofBench

S.Ryu, GG
_ _ ACAT 2011
CPU intensive

— : generation of random numbers, fill histos

— Cycle/s versus # of workers

1/0 intensive

- : read entry from a TTree + some filtering

— Mbytes/s versus # of workers/node or # of workers
- : reset RAM cache before each run
{Average, RMS} of 4 measurements / point

Max and average rate

— Average includes PROOF overhead
Can use custom TSelector and dataset
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Performances examples: PROOF-Lite
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Performances examples: cloud
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TProof::Open("user@host",

Entor cluster URL:
Jpeoctiaverzano@iocalhost 21001/
Enter session: [ 03 Getlogs info] o

-
-

Croose workers: Clear I - I

0 server-4436a906-27ac-47e1-8eec-ClfdTL
0.0 server-Se37Sas3-0e30-4162-b153-6592a
0.0(gprof pp) server-5e3175a3-0e90-4162-ot
01 server-5e375a3-0090-4162-br53-6532a
0.10gprof pp) server-5e3f75a3-0e9b-4162-b

0.2 server-dbfc0329-8¢86-4b70-a812-d14cci
0.20gprof pp) server-dbfc0329-8car-4bT0-a8
0.3 server-dbfc0329-8c6-4070-2812-014ccs
0.30gprofpp) server-dbic0329-8c8r-4b70-38
0.4 server-eeccbaec-5b43-43c3-3e73-Jbch
0.4(\gprof pp) server-eeccbasc-5p43-43c9-9
0.5 server-eeccbanc-5b43-43¢9-9073-Jbch
0.5(gprof.pp) server-eecchasc-5043-43¢9-9
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Punction

TRandcm): :hndn(int) [23]
—ieee?S4_log (28)

coe (29)

@in (1)

Track  rTrack (£loat) (zll

llm(llﬂti tloaté) E}l]

__leea?S4_sqrt [d44)

TIStorage: tIsOnMeap (voidr) [4%)

THath iSqrt (double) (23]

L]

41
Mtilmrul(llut tlocat) (20}
Ant_malloc [9%]
ﬂmmmllmmmﬁ%-i'l (&3]
TBite: :SetBithurber (unsigned int, bool) (53)
Tobject 1 TCBject () [¥9]
Track :rGetPt () const [48)
T™ath: :Sin(double) [30]
sqrt [37]
system (ul
TLockGuard: 1 “TlockGuard() (78]
TOLjArray 1At (int) conet [9%)
THath: :Log(double) (25)

(261
_anit [%9)
m;nﬂlul-tlllhm-:’d int) [108]

1PutOb) ec tW; (TCE)ect’, une. int) (=11

TProcessID: m-m;tmlmm mt) ul
ey’ (TWir [210)
J'LIOIZ (118)
ﬂx!vtrﬂablm;” int) (30)
TRefArray 1 1AddAtAndEspand (TOb)ect®. int) [58)
THath tMax (ant, int) [122]

Toject : 1SetUniquelD(unsigned int) [123)
TCollection: iGeatSizel) conet [1235)
Bvent::Build(int, int, fleat) [19)
TClcnesArray 1 iCiear (char conet®) (26
TObjArray: :AddAtAndExpand (TObject® . int) [68)
TClcnesArray : roparator[| (int) [94)
TOojArray 1 itncheckedAt (int) conet [140]
Tyect : :GetUniquelD({) const [141)

Thet : icperator=(Tobjectt) [32]
Track 1 iClesr (char conet®) [41]
Teeglollection: iChanged () [152)
Toject : TestBit (umsigned int) ccnst [183]
avlowwl [155)

Bvent : :Clear (char ccast*) [35)

TRite 1 iCiesr (char conet*) [30]

wiprinef (124

THath: rAbe (double) (168]

"igprof-pp");

When processing
finishes, special
IgProf logfiles appear

Same technique
used with Valgrind

IgProf is not needed

Unes: @ o [ svemsg From[ 00 J[ 0 Swewatie[Gemontigog  sawe] _Close |
e Faw| I invertmaten I 1 3 ppe command

on the client!

Dario.Berzano@cern.ch - Integration of IgProf in PROOF (with a real life example) 4
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Current plans

* Improving merging
* I[mproving usability



Merging during run

Exploit Master-Worker interactivity

Master collects results from workers during run
and creates directly the final objects

For trees or alike objects (size ~ N)

— Integrate Philippe’s multi-producer/consumer
technology

— PROOF is an ideal application case

For histograms or alike objects (size ™~ fixed)

— Stream buffers of entries to master
» Buffering already exists for automatic bin range mode

— May need new interface for general application



Improving usability

Package management
— Versioning, distribution, default makefiles

Transparency
— Re-usage of TTree code, e.g. for Drawing
— Automatic switch to PROOF-Lite on desktops

Simplified interface for user code
— Ideally usable in a multi-threaded environment

Optimizations for math calculations
— E.g. reuse same setup for multiple calculations



Use of fork in PROOF-Lite

* Improve usability (environment setting) and
resource utilization
* |dea is to try forking the client ROOT session

— Need to evaluate issues related to components
loaded but not need on workers (e.g. graphics ... )



Summary

* Multi-processing in ROOT means PROOF

* Consolidated technology to efficiently operate

— Large facilities (clouds)
* PROOF-As-A-Service

— Multi-cores

* Continue effort to improve usability and
performances



