
Geant4 Status

Presented by A. Dotti for the Geant4 collaboration	

Second Annual Concurrency Forum	

!1

Outlook

!

• Geant4 Version 10: general design	

• Results	

• Outlook for the future

!2

Introduction

•The release in 2013 was a major release.	

-Geant4 version 10.0 – release date : Dec. 6, 2013	

•The highlight is its multi-threading capability.	

-A few interfaces need to be changed due to multi-threading	

•It offers two build options.	

-Multi-threaded mode (including single thread)	

-Sequential mode	

- In case a user depends on thread-unsafe external libraries, (s)he may install Geant4 in
sequential mode.

!3

Geant4 Version 10: design

!4

Geant4 Version 10: event-level parallelism

•This choice minimizes the changes in user-code	

-Maintain API changes at minimum	

•All Geant4 code has been made thread-safe.	

-Thread-safety implemented via Thread Local Storage	

•Most memory-consuming parts of the code (geometry, physics tables)
are shared over threads.	

-“Split-class” mechanism: reduce memory consumption	

-Read-only part of most memory consuming classes are shared	

-Enabling threads to write to thread-local part	

•Particular attention to create “lock-free” code: linearity (w.r.t. #threads)
is the metrics we concentrated on for the v10.0 release.

!5

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Sequential	
 mode	

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

!6

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Multi-­‐threaded	
 mode　

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

!7

Thread-private vs shared

•In the multi-threaded mode, generally saying, data that are stable during the
event loop are shared among threads while data that are transient during the
event loop are thread-local. 	

•In general, geometry and physics tables are shared, while event, track, step,
trajectory, hits, etc., as well as several Geant4 manager classes such as
EventManager, TrackingManager, SteppingManager, TransportationManager,
FieldManager, Navigator, SensitiveDetectorManager, etc. are thread-local. 	

•Among the user classes, user initialization classes
(G4VUserDetectorConstruction, G4VUserPhysicsList and newly introduced
G4VUserActionInitialization) are shared, while all user action classes and
sensitive detector classes are thread-local.

!8

Thread-safety in Version 10.0

•Design: lock-free code during event-loop	

•Thread-safety implemented via Thread Local Storage
•“Split-class” mechanism: reduce memory consumption	

- Read-only part of most memory consuming objects shared between
thread: geometry, (EM) physics tables	

- Rest is thread-private	

!

!
GeometryObject

- shapeSize
- shapePosition
- sensitiveDetector

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1
- sensitiveDetector

SplitClass Thread2
- sensitiveDetector

SplitClass Thread3
- sensitiveDetector

!9

To avoid confusion…

• Multi-threading capabilities in G4 is more than “spawning tasks in parallel”	

• Geant4 code is “parallel-aware”	

- Effort in: thread-safe, substantial memory sharing, API definition, utilities
and wrappers	

• This allows for toolkit to be integrated in any parallelization
framework	

- e.g. we already have MPI and TBB examples	

- To be improved: better memory handling for TBB	

• We also provide a POSIX-based thread management system:
G4MTRunManager	

- Enough for simple applications	

- As for the sequential G4RunManager, we expect large experimental

frameworks to extend this as starting point

!10

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Simplified	
 Master	
 /	
 Worker	
 Model

• A G4 (with MT) application can be seen as simple finite state machine	

• Threads do not exists before first /run/beamOn	

• When master starts the first run spawns threads and distribute work

Master

Worker

Nota Bene	

This is a simplified schema: threads are created
on run initialization so that they are accessible
to interactive commands if needed

!11

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Event	
 tasking	
 is	
 not	
 round	
 robin

• During the master event loop, an event (or a bunch of events) is tasked to a worker thread in
first-come-first-served basis.	

– To minimize the latency at the end of master event loop	

– Required toward our next goal of complete decoupling between the master event loop and

worker thread initialization/termination	

• Desirable for TBB-based simulation (see later slides)	

• Master thread generates 
all the necessary initial 
seeds for all events and 
dispatch.	

– For the sake of full  

reproducibility 
regardless of number 
of threads.

!12

Results

!13

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Performance	
 on	
 different	
 architectures	

• Current release has already shown good scalability on a number of
different architectures: Intel Xeon servers, Intel Xeon Phi co-
processors and low-power ARM processors.

– On Intel architectures, it has shown performance improvements not
only up to the number of physical cores but in hyper-thread mode as
well.

Intel Xeon L5520 @ 2.27GHz

HyperThreading

Exynos 4412 Quad-Core @ 1.7 GHzIntel Xeon Phi 7120P @ 1.238GHz

HyperThreading

!14Thanks to Openlab for providing Intel Xeon Phi hardware	

Thanks to CMS for providing ARM ODROID boards

General considerations

•Fully reproducible: given an event and its initial seed the RNG history is
independent of the number of threads and order in which these are
simulated	

- Corollary 1: given the seeds, sequential and MT builds are equivalent	

- Corollary 2: being able to reproduce a single event in a dedicated job (i.e. crashes)	

•MT functionality introduces minimal overhead (~1%) w.r.t. sequential	

•Very good linear speedup up to very large number of threads O(100)	

•Good memory reduction: only 30-50MB/thread (depends on application)	

•Hyper-threading adds additional +20% throughput	

•Working out-of-the-box with success on different architectures: x86,
ARM, MIC, Atom, IBM Bluegene/Q

!15

More details and comparisons tomorrow presentation on G4 on MIC

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Comparison	
 with	
 sequential	
 mode	
 (speed)

6%

“CMS-style” geometry

!16

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Memory	
 consumption

• Geant4 compiled for MIC
architecture	

• Full CMS detector without
sensitive detectors, hits or
trajectories	

• No optimization yet	

• ~40MB /thread	

• Works in progress to

reduce the memory
consumption per thread.	

- For example eliminating

big thread-local arrays
in physics processes

PRELIMINARYPrel
imin

ary

21

Slope
Intercept

M
em

or
y

si
ze

 (
M

B)

!17

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Comparison	
 with	
 sequential	
 mode	
 (memory)

65%

“CMS-ish” geometry

!18

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

MPI	
 +	
 multi-­‐threading

• Geant4 version 10 works with MPI.	

– Many nodes of many cores

Prel
imin

ary

23

• 4 MPI processes with 2 cores each	

• Each MPI process owns histogram	

• Threads merge dose calculation in shared histogram !19

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Preliminary	
 studies	
 on	
 TBB

• Intel Threading Building Block is a library for task-based  
multi-threading code. Some LHC experiments show their interest 
in the use of TBB in their frameworks.	

• We have verified that the G4 v10 can be used in a TBB-based application
where TBB-tasks are responsible for simulating events.	

– We didn’t need to modify any concrete G4 class/method to adapt to TBB.	

• We provide an example in version 10.0 release to demonstrate the way of
integrating Geant4 with TBB.	

• We keep investigating where/how to reduce memory use.	

• We will keep communicating with our users to polish our top-level

interfaces.	

– Next step includes decoupling of master event loop and worker thread

initialization/termination.

24
!20

Feedback from LHC

• We appreciate all large LHC experiments (ALICE, ATLAS, CMS,
LHCb) have plans to investigate use of Geant4 Version 10.0 and
potentially multi-threading	

• Positive feedback received at Second LPCC Detector Simulation
Workshop	

• Full presentations at LPCC Detector simulation workshop
available at: http://goo.gl/G9Gvle	

• Close communication with experiments is fundamental!

!21

http://goo.gl/G9Gvle

Absolute throughput (sequential)

We have substantially improved
physics (extended HAD theory
driven processes, more precise
EM tables, new processes) and at
the same time improved CPU
performances.	

We believe there are more
opportunities for optimizations in
our code and we are actively
working on them

Heavy developments: FTF becomes	

competitive with QGS Fast Log/Pow mathematics

Improvements for MT also bring	

benefits to sequential

FTFP_BERT

±2.5%

!22

Outlook for the future

!23

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Beyond Geant4 version 10.0

• Geant4 version 10 series will be evolving.
!
!
!
!
!
!
!
!
!

• Performance improvements
– Algorithm optimization / local vectorization

• without losing code readability / maintainability / flexibility
– Optimization of file access

• Memory space reduction in particular for per-thread memory
– Sharing more physics vectors and other objects among threads

• Multithreading leftover
– Some visualization, neutron_hp, general particle source, Geant4e, etc.

• Completion of decoupling between master event loop and worker thread initialization /
termination
– See later slide

!24

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Software	
 quality	
 improvements	
 (http://code.google.com/p/gooda/)

• We	
 are	
 working	
 with	
 Google	
 on	
 performance	
 measurements	
 of	
 Geant4-­‐based	
 application	

using	
 Gooda	
 tool,	
 a	
 PMU-­‐based	
 event	
 data	
 analysis	
 package.	

!25

Geant4 Multithreading in Geant4 version 10 and its integration to experiments' simulation
frameworks - M. Asai (SLAC)

Decoupling	
 of	
 master	
 event	
 loop	
 and	
 worker	
 thread	
 initialization/termination

• Ensuring	
 a	
 worker	
 thread	
 to	
 join	
 at	
 any	

time	
 during	
 the	
 event	
 loop	
 of	
 the	
 master	

– After	
 the	
 master	
 thread	
 finishes	

initialization	
 for	
 geometry	
 and	
 cross-­‐
section	
 tables	
 to	
 be	
 shared	

• Ensuring	
 a	
 worker	
 thread	
 to	
 leave	
 at	
 any	

time	
 during	
 the	
 event	
 loop	
 of	
 the	
 master	

– After	
 finishing	
 assigned	
 task	
 (an	
 event	

or	
 a	
 bunch	
 of	
 events)	

• We	
 plan	
 to	
 complete	
 this	
 decoupling	
 with	

some	
 additional	
 APIs	

– First	
 set	
 of	
 new	
 APIs	
 will	
 come	
 with	

v10.1-­‐beta	
 in	
 June.	

– Your	
 feedbacks	
 are	
 essential.

!26

High priority

•Further reduce memory consumption. Rule of the thumb: fit
complex simulations w/ O(100) threads in O(GB) memory	

- e.g. typical computing power of accelerators	

•In our experience: minimize memory usage can sometime conflict
with other performance considerations (e.g. reduce memory
“churn” via caching need special attention for thread-safety)	

•Most memory consuming objects: geometry and EM physics	

- Efficient memory reduction already achieved in 10.0.beta	

- Next: need to concentrate on Hadronics physics (especially: cross-
sections, specific models with large not-shared tables -BIC-)

!27

Conclusions

• Feedbacks are appreciated. Without users’ feedbacks to Geant4-
MT prototypes, we couldn’t make Geant4 version 10.0.	

• Version 10.0 was a big milestone for us as it was the first
production version of Geant4 in multithreading mode. But it is not
our ultimate goal in terms of making Geant4 multithreaded. 	

• Good results obtained: scalability, memory reduction, CPU
improvements	

• We do expect improvements for Geant4 Version 10.1 (December
2014)	

- complete decoupling of master event loop and worker

initialization/termination so that each worker thread may join/
leave at any time

!28

