Geant4 Status

Presented by A. Dotti for the Geant4 collabogation
Second Annual Concurrency Forum

NNNNNNNN

Outlook

el AL

f b M\

» Geant4 Version |0: general design
* Results

* QOutlook for the future

Introduction

(N

* The release in 2013 was a major release.

-Geant4 version 10.0 — release date : Dec. 6, 201 3
* The highlight Is its multi-threading capabllity.

-A few interfaces need to be changed due to multi-threading
*It offers two build options.

-Multi-threaded mode (including single thread)

-Sequential mode
- In case a user depends on thread-unsafe external libraries, (s)he may install Geant4 In

sequential mode.

GAMT GAMT
G4 10.0.beta G4 10.0 G4 10 series
pm&g’fﬁ’ o pmt(‘z’gyfze) e (June 2013) (Dec. 2013) (2014~)

Proof of * MT code API re- deSIgn ¢ APl * Further
principle integrated ¢ Example refinements refinements
Identify into G4 migration * Production and

objects to * Furthertesting ready optimizations
be shared * First * Public

First testing optimizations release

Geant4 Version 10: event-level parallelism

el AL

f b M\

* This choice minimizes the changes In user-code
-Maintain APl changes at minimum

* All Geant4 code has been made thread-safe.
-Thread-safety implemented via Thread Local Storage

*Most memory-consuming parts of the code (geometry, physics tables)
are shared over threads.

-"Split-class” mechanism: reduce memory consumption
-Read-only part of most memory consuming classes are shared
-Enabling threads to write to thread-local part

*Particular attention to create “lock-free” code: linearity (w.rt. #threads)
s the metrics we concentrated on for the vI10.0 release.

Sequential mode

(

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

A

Multi-threaded mode

main() Master thread

N\

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

Worker thread #0

ager

er

ager

nager

Worker thread #1

er

ver

Worker thread #2

Thread-private vs shared

el AL

f b M\

*In the multi-threaded mode, generally saying, data that are stable during the
event loop are shared among threads while data that are transient during the
event loop are thread-local.

*In general, geometry and physics tables are shared, while event, track, step,
trajectory, hits, etc., as well as several Geant4 manager classes such as
FventManager, TrackingManager, SteppingManager; TransportationManager,
FleldManager; Navigator; SensitiveDetectorManager; etc. are thread-local.

* Among the user classes, user inrtialization classes
(G4VUserDetectorConstruction, G4VUserPhysicsList and newly introduced
G4VUserActionlnitialization) are shared, while all user action classes and
sensitive detector classes are thread-local.

Thread-safety in Version 10.0

* Design: lock-free code during event-loop
* Thread-safety implemented via Thread Local Storage
* “Split-class” mechanism: reduce memory consumption
- Read-only part of most memory consuming objects shared between

thread: geometry, (EM) physics tables
- Rest I1s thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1 SplitClass Thread2 SplitClass Thread3
- sensitiveDetector - sensitiveDetector - sensitiveDetector

To avoid confusion...

el AL

o b MY\

* Multi-threading capabilities in G4 i1s more than “spawning tasks in parallel”

* Geant4 code Is “parallel-aware”

- Effort in: thread-safe, substantial memory sharing, AP| definition, utilities
and wrappers

* This allows for toolkit to be integrated in any parallelization
framework

- e.g. we already have MPl and TBB examples
- To be improved: better memory handling for TBB

* We also provide a POSIX-based thread management system:
G4MTRunManager

- Enough for simple applications

- As for the sequential G4RunManager, we expect large experimental
frameworks to extend this as starting point

10

Simplified Master / Worker Model

* A G4 (with MT) application can be seen as simple finite state machine

* Threads do not exists before first /run/beamOn
* When master starts the first run spawns threads and distribute work

[/run/initialize Physics and Mater Thread
J Initialized J Running

)

MaSter start Thread Join
Prase ey ™ T . W a o - - . .
Worker ThreadStarted Thread Event Loop
Running
Jrun/initialize
Physics and /fun/beamOn
Ceometry
Initialized
Nota Bene

This is a simplified schema: threads are created
on run inftialization so that they are accessible
to interactive commands if needed

Event tasking is not round robin

(
B

* During the master event loop, an event (or a bunch of events) is tasked to a worker thread in

first-come-first-served basis.

— To minimize the latency at the end of master event loop
— Required toward our next goal of complete decoupling between the master event loop and

worker thread initialization/termination

* Desirable for TBB-based simulation (see later slides)

* Master thread generates
all the necessary initial

Geometry and

seeds for all events and

dispatch.

— For the sake of full
reproducibility
regardless of number

of threads.
Init

Event
Loop

Physics
configuration

Merge in Global Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes

Command line scoring and
G4tools automatically merge
results from threads

Performance on different architectures

Speedup

* Current release has already shown good scalability on a number of
different architectures: Intel Xeon servers, Intel Xeon Phi co-
processors and low-power ARM processors.

— On Intel architectures, it has shown performance improvements not
only up to the number of physical cores but in hyper-thread mode as

well.
Intel Xeon L5520 @ 2.27GHz Intel Xeon Phi 7120P @ 1.238GHz Exynos 4412 Quad-Core @ 1.7 GHz
B e Sy S Tt —glu
16 | -
14) | m | a
Brelr? '
o o
12
150} -
10+ o o 3}
g
8 g §
. HyperThreading ot 100 2
al so | HyperThreading] 1
2 -
o i | |
) i] i] {] 0 1 L A 0 1 2 3 3 5
0O 2 4 6 8 10 12 14 16 0 50 100 150 200 N Threads
N Threads N Threads

Thanks to Openlab for providing Intel Xeon Phi hardware
Thanks to CMS for providing ARM ODROID boards

General considerations

el AL

o b M\

* Fully reproducible: given an event and its initial seed the RNG history is
iIndependent of the number of threads and order in which these are
simulated

- Corollary |: given the seeds, sequential and MT builds are equivalent
- Corollary 2: being able to reproduce a single event in a dedicated job (i.e. crashes)

*MT functionality introduces minimal overhead (~ %) w.rt. sequential
*Very good linear speedup up to very large number of threads O(100)

* Good memory reduction: only 30-50MB/thread (depends on application)
* Hyper-threading adds additional +20% throughput

* Working out-of-the-box with success on different architectures: x86,
ARM, MIC, ¥ Atom, R¥IBM Bluegene/Q

More details and comparisons tomorrow presentation on G4 on MIC

15

Comparison with sequential mode (speed)

Speedup Efficiency-5 GeV e |

9_) 1.1 T T T T 1] T T n

(@) - -
g 1.08 :— e _:

& 1.06F -
g

~ 1.04

o -

£ 1.02

=

2 A
%,) 0.98

S 0.96F 6%
O -

c‘cr"c 0.94 v

0.92F
0.9

“CMS-stvle” ¢ Processor: AMD Opteron(tm) Processor 6128 : 32 cores (4 CPU sockets x 8 cores)
style” geometry CPU: 2000 MHz, Cache: 512 KB, Total Memory: 66007532 kB
OS: Linux kernel 2.6.32-358.11.1.el6.x86_64 GCC 4.4.6 20120305 (Red Hat 4.4.6-4)

Memory consumption

Geant4 compiled for MIC

architecture

Full CMS detector without

sensitive detectors, hits or

trajectories

No optimization yet

~40MB /thread

Works In progress to

reduce the memory

consumption per thread.

- For example eliminating
big thread-local arrays
in physics processes

4500

4000

3500

(MB)
S

Memory size

Intercept
17.5(1697/97)

12279

Comparison with sequential mode (memory)

Memory Reduction - 50 GeV e
1.6 Pe———

llllll 1 !

1 4 SR #— RSS-SHARED I

- - —&— VSIZE .

65%

[Mem(MT)/Ncore]/Mem(SEQUENTIAL)

N Cores

NCMS-ish” t Processor: AMD Opteron(tm) Processor 6128 : 32 cores (4 CPU sockets x 8 cores)
ISh™ geometry CPU: 2000 MHz, Cache: 512 KB, Total Memory: 66007532 kB
OS: Linux kernel 2.6.32-358.11.1.€el6.x86_64 GCC 4.4.6 20120305 (Red Hat 4.4.6-4)

MPI + multi-threading

— Many nodes of many cores

Geant4 version |0 works with MPI.

Dose Distnbution

Dose Distnastion
10

X1cm)

X
o

Xiem)

.\(\OX‘\| Dose Distribution

Dose Distnbution \
A\ _ 10

cmj

X

o > -

. Y.,
B e s:::'; -
— "_ A -

4 MPI processes with 2 cores each

Each MPI process owns histogram
Threads merge dose calculation in shared histogram

Preliminary studies on TBB

* Intel Threading Buillding Block is a library for task-based
multi-threading code. Some LHC experiments show their interest

INn the use of TBB in their frameworks.

* We have verified that the G4 vI0 can be used in a IBB-based application

where TBB-tasks are responsible for simulating events.
— We didn't need to modify any concrete G4 class/method to adapt to TBB.

* We provide an example in version 0.0 release to demonstrate the way of
integrating Geant4 with TBB.

* We keep investigating where/how to reduce memory use.

* We will keep communicating with our users to polish our top-level

iInterfaces.

— Next step includes decoupling of master event loop and worker thread

initialization/termination.

Feedback from LHC

el AL

f b M\

- We appreciate all large LHC experiments (ALICE, ATLAS, CMS,

_HCD) have plans to investigate use of Geant4 Version 10.0 and
botentially multi-threading

- Positive feedback received at Second LPCC Detector Simulation
Workshop

* Full presentations at LPCC Detector simulation workshop
avallable at; http://g00.8l/G9Gvle

- Close communication with experiments is fundamental!

21

http://goo.gl/G9Gvle

Absolute throughput (sequential)

Relative time

Heavy developments: FTF becomes
competitive with QGS

115

EPU performances (50 GeV Pb/LAr)

Fast Log/Pow mathematics

110

55 5

*"—e &

105
095 | ;
090 |
FTFP_BERT
085 A 1 ol | A 'S
v A & ~ A ~ v S r~
g § 9 £ & § § § 8
> > A A o o S
< < < < <) '9

Improvements for MT also bring
benefits to sequential

We have substantially improved
physics (extended HAD theory
driven processes, more precise
EM tables, new processes) and at
the same time improved CPU
performances.

We believe there are more
opportunities for optimizations in
our code and we are actively
working on them

22

‘oooooocooun

Beyond Geant4 version 10.0

« Geant4 version 10 series will be evolving.

GAMT GAMT
G4 10.0.beta G4 10.0 G4 10 series
Pr °t(‘;3’1ple) o pm&g’l";‘) o (June 2013) (Dec. 2013) (2014~)

Proof of * MT code * APl re-design * AP * Further
principle integrated ¢ Example refinements refinements
* |dentify into G4 migration * Production and
objects to » Furthertesting ready optimizations
be shared * First * Public
* First testing optimizations release

« Performance improvements
— Algorithm optimization / local vectorization
 without losing code readability / maintainability / flexibility
— Optimization of file access
 Memory space reduction in particular for per-thread memory
— Sharing more physics vectors and other objects among threads
« Multithreading leftover
— Some visualization, neutron_hp, general particle source, Geant4e, etc.

« Completion of decoupling between master event loop and worker thread initialization /
termination

— See later slide

Software quality improvements (http://code.google.com/p/gooda/)

lad.
o —

”

« We are working with Google on performance measurements of Geant4-based application
using Gooda tool, a PMU-based event data analysis package.
.= Cydes Samples - Cydes Samples
o N cher - o

St orw‘-"'. 1'-51“‘01’ dﬂ“'dh‘ o s ""u'“"t\:lﬁ ‘1:;:?“ moi*"'"‘” w."'f“t'mﬁp‘uf“ 1108 ! \I“."'.L - o 2‘:::““\:‘;7::“0«0-?&_“‘#? «mf"“‘
S S 0L (100%) B340 (7IX) BLEL 063I3 LSh0O04 (62) 102000 (40%) 3478 (X 801 (10X0) 18340 (730 BMIL 96331 LST0O4 () L0209 (40K)
Ox30ce8 521 £ gasic #lock 26 <0x30b2bs wE (%) M6 (sa%) 95 108 2 Mm™ 513 cAdosble y;
Oxddcel 521 Tea O0a0(, %rax,d) X8 139 (%) (0 n 18 20 (45 514 if(thetnergy <= ecgemin) { 43505 (I7%) 35500 (B1X) 5730 7862 24B14 (S6K) 19473 (44K
0x30cef 521 ml) 515 lastIde = 0; 63 () 519 (81%) 63 10 W08 (a%) N8 (5]
dcf0 S21 lea OuxA{ Srax. 8) %% 80 (o) 7 (4 a“ 0 516 y = datavector[0]; 1202 (%) 1082 (90%) 111 153 035 (3%) 924 (TEKX
0x30¢F7 521 mell 517§ else if(thetnergy »= edgedax) { 370 (1) 2353 (M%) es1 78 1113 (35%) 1520 (ax|
Ox30cf8 521 jepa 30B2D 50 (o) 7T () 16 5 5§13 TastTde « number0fvades-1;
Oxdicfd 521 fasic Alock 27 <Oxddi0- 519 y = datavector[lastzde];
0x30cfd 521 nepl (Krax) S20 § else |
Ox30000 S21) masic #lock 28 <Oxdlesd 746} (x) Wiy (N nu 11 U (o6%) 4529 (68X) 19 | Tastide « Findain(thatnergy, Tastidx); 100860 (43%) 768531 (69K) 45106 54010 65906 () 41589 (X%
0x30600 521 mews Xumed,-DxB(¥rsp) 05 () 4d (68%) w246 29 (12%) 78 (46X) n | s y = Interpolation(lastidx, thetnergy); 54798 (33%) 61193 (720) 29102 32887 59616 (7ON) 35646 (axx]
0x30006 521 wov -OxB(¥rsp) Xrax B05 (0N) 76 (EA%) 206 264 10 (1%) 566 (70K) RO P&
30t 521 [= Srax, Srex 66 (%) as O™ 19 173 0 (125 98 (2% 524 return y;
0x30d0e 521 she S0x34,Xeex 517 (oK) m o) m M 30 (5%) 149 (28K) 525) 6539 (%) S41 (90%) S0A 887 1034 (15%) 2554 (39x]
0x30d12 521 seb SOW3F Mecx 19 (o) BN N &0 516
0a30dif 521 evtsiled Secx, Scnmd 199 (ox) UM) &0 20 () 57 .
0x30dlc 521 wew SONBOOTFPIFIrere 1237 (o) 9357 (™% 484 %5 &0 (4%) 765 (62%) w o B
3023 521) 529 cAdochle CAPhysicsvector: FindLinmartnesg.
0x30d26 521 ard Keex, Krax 10 (oK) 8 530 {
0x30d29 521 wov SO3fe00000000000 §31 9F(1 >« mumberofNedes) { return 0.0; }
Ox30di0 521 nel) 532 sfze tnl -0
0x30d33 521 ar Krox, Krax $13 size_t n? « numberOfNodes/2;
A drdne £ P Sons At AW et ay e o reren ey e - s Yan ¢ aiws s Sire vl o mmbharnfusdas . 1
R R

 Busic Biock 4
Basic Block 13
— _-_.m
tsic Block 17 asic Biock 18 Dichek !9
. 0
¥ j“:"ff:f' Busic Block 14 Basic Hiock 15 Aax ¢
Basic Block 20 B Block 21 Basic Block 22 Busic Block 23 Basic Block 4 Busic Block 25
Baec Block 27 Busic Block 2 Busic Hiock 29 Buic Block 38 Busic Block &
Basic Block 33 Basic Block 30 —- Busic Block 3% Basic Block M

Decoupling of master event loop and worker thread initialization/termination

 Ensuring a worker thread to join at any

time during the event loop of the master Ge%rrr:;;ycsand
— After the master thread finishes configuration

initialization for geometry and cross-
section tables to be shared

* Ensuring a worker thread to leave at any
time during the event loop of the master

— After finishing assigned task (an event

or a bunch of events) Pel‘-!t;nl'ead

 We plan to complete this decoupling with
some additional APIs

— First set of new APIs will come with
v10.1-beta in June.

— Your feedbacks are essential.

End Local
Run

Merge in Global Run

High priority

el AL

o b MY\

* Further reduce memory consumption. Rule of the thumb: fit
complex simulations w/ O(100) threads in O(GB) memory
- e.g. typical computing power of accelerators

*In our experience: minimize memory usage can sometime conflict
with other performance considerations (e.g. reduce memory
“churn’ via caching need special attention for thread-safety)

* Most memory consuming objects: geometry and EM physics

- Efficient memory reduction already achieved in 10.0.beta
- Next: need to concentrate on Hadronics physics (especially: cross-
sections, specific models with large not-shared tables -BIC-)

27

Conclusions

el AL
T e M\

Feedbacks are appreciated. Without users’ feedbacks to Geant4-
MT prototypes, we couldnt make Geant4 version 10.0.

- Version 0.0 was a big milestone for us as it was the first
production version of Geant4 in multithreading mode. But 1t Is not

our u

timate goal In terms of making Geant4 multithreaded.

- Good results obtained: scalability, memory reduction, CPU
improvements

- We do expect improvements for Geant4 Version 10.] (December
2014)

complete decoupling of master event loop and worker

initialization/termination so that each worker thread may join/
leave at any time

28

