
High Energy Electromagnetic Particle
Transportation on the GPU!
P. Canal, D. Elvira, S.Y. Jun, G. Lima (Fermilab)!
J. Apostolakis (CERN)!
A. Mametjanov (Argonne National Laboratory, US)!
Annual Concurrency Forum Meeting, April 2-3, 2014, CERN !

Overview!

•  Introduction!
•  GPU Prototype!
•  Physics Validation!
•  Performance!
•  Challenges and New Strategies!
•  Incorporating into the Vector Prototype!
•  Plans !

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!2!

Introduction!
•  Goals!

–  R&D a massively parallelized HEP simulation engine!
–  explore new HPC programing models for HEP!

•  Two-fold problem: data locality and instruction throughput!

!

•  Strategies: !
–  track-level parallelism (originally proposed by R. Brun)!
–  SIMD: vectorization (VPU + data locality) !
–  SIMT: thread level parallelism (ALU + shared memory)!

maximize minimize
memory locality latency

instruction throughput divergence

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!3!

Concurrent Programming Model!

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!

•  Host (CPU) + Coprocessors (GPU, MIC)!
!

Auto	
 Vectoria,on	

Mul,-­‐Core	

Mul,	
 Threading	

SIMD/SIMT	
 Data	
 Transfer	

Load	
 Balance	
 	

April 2, 2014!4!

Particle Transport on the GPU!

•  Initial scope: charged particle transportation in a magnetic
field as a demonstrator!
–  propagate {tracks} for {given step lengths} through a simple

geometry (similar to the CMS electromagnetic calorimeter)!
–  lesson learnt (see backup for performance)!

•  arithmetic intensity = instructions/(memory load) is too low !
•  data transfer is costly (compared to kernel execution time)!

•  Extension: full EM particle tracking on the GPU !
–  implemented physics processes and models for e-/γ	

–  nothing is free: additional divergences and memory accesses !

•  Restructuring the simulation flow !
–  separate kernels and regroup tracks for each subtask !

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!5!

GPU Prototype: Three Core Components!

•  Geometry!
–  detector!
–  B-field!
–  navigator!

•  EM Physics !
–  e-/gamma!
–  cross section!
–  final state!

•  GPU Scheduler!
–  task stealing!
–  load balance!

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!6!

Summary of Simulation Flow!
•  Initial data transfer to the GPU (global memory)!

–  detector (geometry and magnetic field)!
–  physics (cross sections and other data used in physics models) !
–  random states!

•  Recurrent data transfers!
–  input tracks from an external scheduler !
–  output (surviving & secondary particles, hits)!

•  Concurrent kernel executions!
–  use separate kernels for each particle type (e-, γ)!
–  calculate cross sections and find distance to interaction!
–  transport in a realistic HEP magnetic field (CMS) !
–  sort by winning physics process (i.e. which occurs first)!
–  sample final state and apply user stepping actions !

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!7!

Split Kernel: Example of High Level Restructuring!
•  Decompose the GPU kernel by tasks and regroup tracks by!

–  particle type (charged vs. neutral) (~30% faster for e-:γ=0.8:0.2)!
–  physics process (~2x faster) !
–  (logical volume for navigation)!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!8!

Physics Validation of GPU Physics !

•  Compare simulated physics outputs !
–  device code (RED) vs. Geant4 (BLUE) !
–  ex. Bremsstrahlung process (1 GeV e-) !
–  interaction length, energy loss, angular distribution of secondary

photons, etc. !

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!9!

Performance Evaluation!

•  Hardware (host + device)!

!

•  Performance measurement !
–  (4096x32) tracks !
–  Gain = Time (1 CPU core)/Time (total GPU cores) !
 Time = (data transfer + kernel execution)!
–  default <<< Blocks, Threads >>> organization

M2090<<<32,128>>> and K20<<<26,192>>> !

	
 	
 	
 EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!

Host (CPU) Device (GPU)

M2090 AMD Opteron™ 6134
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)
512 cores @ 1.3 GHz

K20 Intel® Xeon® E5-2620
24 cores @ 2.0 GHz

NVidia K20 (Kepler)
2496 cores @ 0.7GHz

April 2, 2014!10!

Performance: Realistic Simulation !
•  A simple calorimeter (CMS Ecal) with the CMS b-field map!
•  Tracking for one step: split kernels (GPIL+sorting+DoIt)!
!

()*: GPU time using one kernel (sequential stepping) !
•  Performance by each kernel (% of the total application time)!

–  random states (MTwister) : 5.8% (one time initialization)!
–  physical interaction length and transportation: 47%!
–  count_by_process: 2.2%!
–  sort_by_process: 2.7%!
–  post step actions and writing secondary particles: 42.3% !

CPU [ms] GPU [ms] CPU/GPU

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)*

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!11!

Performance Issues and Considerations !
•  Observed issues (by the Nvidia profiler)!

–  low arithmetic intensity and high branch divergence!
–  high memory latencies and low multiprocessor occupancy !

•  Considerations!
–  memory access!

•  global: aligned, coalesced and pre-allocated DMA!
•  shared: block-based reduction (ex. atomic counter)!
•  texture memory (spatial locality, ex. magnetic field map)!

–  data structure (AoS vs. SoA)!
–  floating point consideration (double vs. float)!
–  random number generation (different SIMD pRNGs)!
–  efficient sorting (bucket vs. thrust::sort)!
–  multiple streams and concurrent kernels!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!12!

Challenges and New Strategies!
•  HEP detector simulation (ex. Geant4) is a giant!

–  complicated, object oriented physics simulation!
–  designed for efficient memory footprints (data driven) !
–  random sampling (ex. acceptance and rejection)!

•  Coprocessor architectures !
–  hard to scale performance for conventional HEP detector

simulation (non-deterministic) - almost impossible (?) !
–  fine tuning is critical, but restructuring simulation with efficient

memory accesses is much more important!
•  Top-down approach!

–  develop fully optimized (cudarized) and vectorized components
of geometry and physics!

–  Incorporate into a concurrent simulation framework !

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!13!

Incorporating into the Vector prototype!
•  The vector prototype started at CERN (talk by F. Carminati) !

–  scheduler based on p-thread (Andrei Gheata)!
–  vectorized geometry (talk by S. Wenzel and J. De Fine Licht)!
–  tabulated physics (cross section, final states sampling, etc.)!

•  Integration to the vector prototype (GPU broker)!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!14!

GPU Connector to the Vector Prototype!
•  Goals!

–  maximize kernel coherence!
–  adapt to GPU ‘ideal’ bucket size (very different from CPU)!
–  process only tracks GPU can handle efficiently!
–  differences(s) in data layout!

•  Implementation !
–  stages particles in a set of (customizable) buckets!

•  particle/energy that have a common subset of physics models!
•  keep order provided by the main scheduler!

–  delays the start of a kernel/task until it has enough data or has
not received any new data in a while!

–  starts uploads after each basket processing to maximize
overlap (even before the bucket is full)!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!15!

Plans!

•  Fully Integrate the GPU prototype with the vector prototype !
–  demonstrate a working example with the GPU connector !
–  adopt/develop vectorized components (geometry, transport,

physics) and evaluate performance !
•  Redesign the GPU prototype optimally for SIMD/SIMT!

–  minimize branches (granulize tasks)!
–  maximize spatial locality (reuse data) !
–  efficient data structure, algorithms and kernel managers for

leveraging TLP/vectorization!
•  Code abstraction !

–  template algorithms for scalar, vector and device !
–  early considerations for hybrid/parallel computing models!

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting! April 2, 2014!16!

Backup!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!17!

EM Physics!

•  Processes and models implemented!

•  Use look-up tables for lambda and other parameters for
energy loss and final state samplings!

•  Secondary particles are stored atomically on GPU, and
may be transported to CPU or rescheduled for the next
tracking cycle on GPU!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!18!

Performance – Transportation !
•  Decompose transportation by the particle type !

–  separate kernels is ~30% faster for γ:e- = 0.2:0.8 mixture!
•  Performance of numerical algorithms for the equation of

motion of a charged particle in a magnetic field!

!

GPU Type Algorithm CPU[ms] GPU[ms] Kernel[ms] CPU/GPU CPU/Kernel

Classical RK4 106.9 9.7 2.6 10.9 41.0

M2090 RK-Felhberg 119.3 9.9 2.8 12.0 42.3

Nystrom RK4 39.4 7.9 0.8 5.0 51.8

Classical RK4 78.6 4.5 1.7 17.5 47.4

K20 RK Felhberg 87.9 4.4 1.6 19.8 55.2

Nystrom RK4 30.9 3.5 0.7 8.6 46.9

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!19!

Floating-point Consideration!

•  Cost for double-precision!
–  memory throughput (x2)!
–  possible registers spilling!
–  cycles for arithmetic instructions

(x2/x3 in M2090/K20)!
–  performance in classical RK4:

float/double = 2.24 (M2090)!
–  not negotiable for precision and

accuracy!
•  Possibilities for single-precision!

–  input physics tables!
–  B-field map (texture)!
–  local coordination!

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!20!

Global Memory!

•  EM physics processes and models require frequent data
access from/to global memory!
–  input: material information, physics tables!
–  output: secondary particles (N=0,1,2 per step) and hits!

•  Memory transaction (atomic add) for 100K secondaries!
!
!

•  Strategies for secondary particles, hits and etc.!
–  any dynamic memory allocation is very expensive !
–  use pre-allocated memory (a fixed size stack on GPU) !

NVIDIA M2090 <<<32,128>>> GPU [ms] CPU [ms]
Pre-allocated fixed memory 1.5 39.5

Dynamic allocation per thread 49.8 59.1
Dynamic allocation per block 79.0 59.0

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!21!

Data Structure!

•  Coalesced global memory access!
–  align memory address for efficient data access!

•  Array of Struct (AoS) vs. Struct of Array (SoA)!
–  a simple test of loading data (4-doubles, 8-doubles) and writing

back to the global memory (65K accesses) !

!

–  CPU: really depends in the size of data and architecture!

0
0.05

0.1
0.15

0.2

M2090
4-doubles

M2090
8-doubles

K20
4-doubles

K20
8-doubles

AoS
SoA

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!22!

,me	

(ms)	

Random Number Generators!
•  SIMD random number engine in each thread!
•  CUDA pRNG library (CURAND)!

–  xor-family (XORWOW)!
–  L’Ecuyer’s multiple recursive generator (MRG32k3a)!
–  Mersenne Twister (MTGP32, 32bit, period 2^11213)!

•  Performance: (64 blocks x 256 threads)!
–  two kernels (initialize states, generation) for efficiency!

!
CURAND pRNG Init States [ms] 10K RNG [ms]

XORWOW 4.12 7.92
MRG32k3a 5.02 21.88

MTG32 0.69 31.94

April 2, 2014!EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting!23!

