Jet Vetoes Interfering with $H{\rightarrow}$ WW

Ian Moult

Massachusetts Institute of Technology

With lain Stewart : 1404.XXXX

SCET 2014

lan Moult (MIT)

Jet Vetoes Interfering with $H \rightarrow WW$

March 26, SCET 2014

- 1. Motivation: Off-Shell Effects and the Higgs Width
- 2. Jet Vetoes and Off-shell Effects
- 3. $gg \rightarrow H \rightarrow WW$: Resummation for Signal-Background Interference
- 4. Jet Vetoes Interfere with Higgs Width Bounds

E Sac

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

- Higgs physics has entered a precision era!
- Higgs couplings and width are a sensitive probe of BSM physics.
- Focus has been on rate measurements in the Narrow Width Approximation (NWA):

$$\sigma_{\mathsf{nwa}} = \sigma_{i \to H} (\hat{s} = m_H^2) \frac{\Gamma_{H \to f}}{\Gamma_H}$$

• In terms of couplings and width:

$$\sigma_{nwa} \sim \frac{g_i^2 g_f^2}{\Gamma_H} \implies \text{Invariant under } g \rightarrow \xi g, \ \ \Gamma_H \rightarrow \xi^4 \Gamma_H$$

 Due to ξ, impossible to disentangle Higgs width from Higgs couplings without further assumptions.

lan Moult (MIT)

March 26, SCET 2014 3 / 22

Off-Shell Effects in Vector Boson Final States

• $\Gamma_{H}^{\text{SM}} \simeq 4 MeV$, but for decays to massive vector bosons there are non-negligible contributions from $m_{41} \gg m_{H}$.

- Can be removed by cuts in Higgs searches so that σ^{nwa} is accurate.
- I will focus on these contributions for gg → H → WW. Two topologies contribute at LO:

$$\sigma \sim \left| \underbrace{\begin{smallmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

• Two contributions depend on the Higgs properties:

Remaining term contributes to background.

Ian Moult (MIT)

March 26, SCET 2014

Off-Shell Effects in Vector Boson Final States

- Off-Shell effects give \sim 10% contribution to total integrated cross section.

• In the far off-shell region, signal background interference gives the largest contribution involving the Higgs. Its resummation has not been studied, but is required for a description of the off-shell cross-section with a jet veto.

Ian Moult (MIT)

Jet Vetoes Interfering with $H \rightarrow WW$

March 26, SCET 2014

Signal-Background Interference

- Much smaller total cross section than Higgs mediated contribution. To get an idea of the size, consider: $R_I = \frac{\int dm_{4l}(\sigma_H + \sigma_I)}{\int dm_{4l} \sigma_H}$
- Interference comes entirely from above $m_{4l} = 2m_W$. Small for Light Higgs Large for Heavy Higgs

Possible to remove interference by cuts for a light Higgs.

lan Moult (MIT)

March 26, SCET 2014 6 / 22

[Campbell, Ellis, Williams 1107.5569]

Signal-Background Interference

- Much smaller total cross section than Higgs mediated contribution. To get an idea of the size, consider: $R_I = \frac{\int dm_{4I}(\sigma_H + \sigma_I)}{\int dm_{4I} \sigma_H}$
- Interference comes entirely from above $m_{4I} = 2m_W$.

Jet Vetoes Interfering with $H \rightarrow WW$

→ ∃ → March 26, SCET 2014

6 / 22

< 177 ▶

[Campbell, Ellis, Williams 1107,5569]

Connection to the Higgs Width

Small, But Interesting!

[Caolo, Melnikov 1307.4935] [Campbell, Ellis, Williams 1311.3589,1312.1628]

• Off-Shell Contributions are independent of the Higgs width:

$$\frac{1}{(\hat{s}-m_H^2)+i\Gamma_H m_H} \xrightarrow{\hat{s}\gg m_H} \frac{1}{(\hat{s}-m_H^2)}$$

 \implies Provides sensitivity to three distinct scalings

$$\sigma_{\rm nwa} \sim \frac{g_i^2 g_f^2}{\Gamma_H}, \qquad \sigma_I \sim g_i g_f, \qquad \sigma_H^{\rm off-shell} \sim g_i^2 g_f^2,$$

allowing one to disentangle coupling and width information.

- Relies on ability to experimentally separate components
 - $H \rightarrow ZZ$: easy, \hat{s} is measured.
 - $H \rightarrow WW$: use M_T

$$M_T^2 = (E_T^{\text{miss}} + E_T^{\text{II}})^2 + |\mathbf{p}_T^{\text{II}} + \mathbf{E}_T^{\text{miss}}|^2$$

• LHC measurements of σ_{nwa} are consistent with the SM. This has fixed the scaling of large new physics contributions:

Recall:

$$\sigma_{nwa} \sim \frac{g_i^2 g_f^2}{\Gamma_H} \implies \text{Invariant under } g = \xi g^{SM}, \ \ \Gamma_H = \xi^4 \Gamma_H^{SM}$$

Rewriting ξ in terms of Γ_H , we find that the off-shell Higgs mediated and signal-background interference cross sections scale like:

$$\sigma_{I} = \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}} \sigma_{I}^{\text{SM}}, \quad \sigma_{H}^{\text{off-shell}} = \frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}} \sigma_{H,\text{SM}}^{\text{off-shell}}$$

• LHC measurements of σ_{nwa} are consistent with the SM. This has fixed the scaling of large new physics contributions:

Recall:

$$\sigma_{nwa} \sim \frac{g_i^2 g_f^2}{\Gamma_H} \implies \text{Invariant under } g = \xi g^{SM}, \ \ \Gamma_H = \xi^4 \Gamma_H^{SM}$$

Rewriting ξ in terms of Γ_H , we find that the off-shell Higgs mediated and signal-background interference cross sections scale like: Sensitive to Γ_H !

$$\sigma_{I} = \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{SM}}} \sigma_{I}^{SM}, \quad \sigma_{H}^{off-shell} = \left(\frac{\Gamma_{H}}{\Gamma_{H}^{SM}} \sigma_{H,SM}^{off-shell}\right)$$

• LHC measurements of σ_{nwa} are consistent with the SM. This has fixed the scaling of large new physics contributions:

$$\sigma_{I} = \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}\sigma_{I}^{\text{SM}}}, \quad \sigma_{H}^{\text{off-shell}} = \frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}\sigma_{H,\text{SM}}^{\text{off-shell}}$$

- Using current data in both $H \rightarrow ZZ$ and $H \rightarrow WW$: Bounds of $\Gamma_H \sim 10 - 25 \Gamma_H^{SM}$ from off-shell region compared to $\Gamma_H \sim 1000 \Gamma_H^{SM}$ from on-shell analysis. [CMS arXiv:1312.5353] [Campbell, Ellis, Williams 1312.1628]
- Motivates dedicated experimental studies and improved theoretical understanding of the far off-shell region, especially in the presence of realistic experimental cuts:

Current calculation LO and ignores Jet veto

• LHC measurements of σ_{nwa} are consistent with the SM. This has fixed the scaling of large new physics contributions:

$$\sigma_{I} = \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}\sigma_{I}^{\text{SM}}}, \quad \sigma_{H}^{\text{off-shell}} = \frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}\sigma_{H,\text{SM}}^{\text{off-shell}}$$

- Using current data in both $H \rightarrow ZZ$ and $H \rightarrow WW$: Bounds of $\Gamma_H \sim 10 - 25 \Gamma_H^{SM}$ from off-shell region compared to $\Gamma_H \sim 1000 \Gamma_H^{SM}$ from on-shell analysis. [CMS arXiv:1312.5353] [CMS arXiv:1312.5353] [CMS arXiv:1312.5353]
- Motivates dedicated experimental studies and improved theoretical understanding of the far off-shell region, especially in the presence of realistic experimental cuts:

Current calculation LO and ignores Jet veto

Jet Vetoes

• Jet Vetoes essential for $H \rightarrow WW$ to reduce $\bar{t}t$ background.

 \implies Maximum sensitivity in zero jet bin: $p_T^J < p_T^{veto}$

• Places severe constraints on radiation

 \implies Large logarithms, $\log m_H/p_T^{veto}$, necessitate resummation.

Jet Vetoes and Off-Shell Effects

What changes when you go off-shell?

• Consider processes with contributions from a large range of \hat{s} .

e.g. Interference in $gg \rightarrow H \rightarrow WW$

Nontrivial contributions from $m_{Al} = 160 \rightarrow \sim 700 \text{ GeV}$

- Resum $\log \sqrt{\hat{s}}/p_T^{veto}$: Changes significantly from on-shell to far off-shell contribution
- Basic effects of Jet Veto on zero jet cross section:
 - Modifies differential distributions in \hat{s} or M_T .
 - Inteference and interference cancellations are reshaped.
- Doesn't occur in NWA where cross-section is evaluated at $\hat{s} = m_{H}^{2}$.

Factorization Theorem with a p_T^{veto}

 Factorization theorem for exclusive 0-jet bin defined using a cut p_T^{veto} of anti-kt jets in SCET_{II}:

$$\begin{aligned} \frac{d\sigma(p_T^{\text{veto}})}{d\sqrt{\hat{s}}} &= \frac{d\sigma_B}{d\sqrt{\hat{s}}} \sum_{i,j} \mathcal{H}_{i,j}(\sqrt{\hat{s}},\mu) \\ \int dY \ B_i(\sqrt{\hat{s}}, p_T^{\text{veto}}, R, x_a, \mu, \nu) \times B_j(\sqrt{\hat{s}}, p_T^{\text{veto}}, R, x_b, \mu, \nu) S_{i,j}(p_T^{\text{veto}}, R, \mu, \nu) \\ &+ \frac{d\sigma_0^{Rsub}(p_T^{\text{veto}}, R)}{d\sqrt{\hat{s}}} + \frac{d\sigma_0^{ns}(p_T^{\text{veto}}, R, \mu_{ns})}{d\sqrt{\hat{s}}} \begin{bmatrix} \text{Based on:} \\ \text{[Stewart, Tackmann, Walsh, Zuberi 1307.1808]} \\ \text{[Tackmann, Walsh, Zuberi 1206.4312]} \end{bmatrix} \end{aligned}$$

• Hard function encodes process dependent hard matrix element. For the case $gg \to H \to WW \to \mu \bar{\nu}_{\mu} \bar{e} \nu_e$ which I will consider, this will be the focus.

• Beam and Soft functions depend only on measurement and parton identity, and have been previously calculated.

Expansion to NLL

• Quantify general effect of jet veto as a function of \hat{s} :

$$E(\hat{s}) = \left(\frac{d\sigma_0(p_T^{veto})}{d\sqrt{\hat{s}}}\right) \middle/ \left(\frac{d\sigma}{d\sqrt{\hat{s}}}\right)$$

• Convenient expansion to NLL, in terms of standard QCD objects(with canonical scale choices): [Banfi, Salam, Zanderighi 1203.5773]

$$\sigma_{NLL}(p_T^{veto}) = \int d\hat{s} \int dx_1 dx_2 f_1(x_1, \mu = p_T^{veto}) f_2(x_2, \mu = p_T^{veto}) \\ \times \delta(x_1 x_2 E_{cm}^2 - \hat{s}) |\mathcal{M}(\hat{s})|^2 e^{-K_{NLL}(\sqrt{\hat{s}}/p_T^{veto})}$$

• Use NLL expression to understand basic behavior/dependencies before focusing on the example of $gg \rightarrow H \rightarrow WW$.

Jet Vetoes and Off-Shell Effects

Jet Veto \implies Strong \hat{s} dependent suppression in the zero jet bin.

$gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$

- Use the phenomenologically interesting case of $gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$ to demonstrate the effect of the jet veto on the off-shell cross section.
- Perform an NLL resummation of the off-shell cross-section: Requires both Higgs mediated contribution and signal-background interference.
- Use a hard function that is fully differential in leptonic final state.

 Easy to implement realistic cuts.
- Will allow us to comment on the effect of the jet veto on the Higgs width bounds derived from this channel

 $gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$

Hard Function:

 Use a helicity and color basis in SCET to easily interface with fixed order QCD calculations: [Stewart, Tackmann, Waalewijn 1211.2305]

$$\mathcal{O}^{++} = \mathcal{B}^{a}_{n+} \mathcal{B}^{a}_{\bar{n}+} \bar{\mu} \gamma^{\alpha} (1-\gamma_5) \nu_{\mu} \bar{\nu}_e \gamma_{\alpha} (1-\gamma_5) e$$
$$\mathcal{O}^{--} = \mathcal{B}^{a}_{n-} \mathcal{B}^{a}_{\bar{n}-} \bar{\mu} \gamma^{\alpha} (1-\gamma_5) \nu_{\mu} \bar{\nu}_e \gamma_{\alpha} (1-\gamma_5) e$$

- Higgs is a scalar $\implies \mathcal{O}^{+-} = \mathcal{O}^{-+} = 0.$
- No mixing between helicity structures under RGE.
- Separate Wilson coefficient for continuum, C^C, and Higgs mediated, C^H, contributions. Easy to discuss interference.

$$\mathcal{H}^{H} = |C_{++}^{H}|^{2} + |C_{--}^{H}|^{2}$$
$$\mathcal{H}^{int} = 2\operatorname{Re}\left[C_{++}^{H}(C_{++}^{C})^{\dagger}\right] + 2\operatorname{Re}\left[C_{--}^{H}(C_{--}^{C})^{\dagger}\right]$$

$gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$

- Difficult regime for fixed order calculations: Require full dependence on top quark mass
- C^H: Analytic result for two loop virtuals with quark mass dependence known. [Harlander, Kant 0509189] Anastasiou, Beerli, Bucherer, Daleo, Kunszt 0611236 00000000 • C^C: Two loop virtuals unknown. Leading (One loop) calculation done by
 - MCFM: Extract C_{++}^{C} , C_{--}^{C}
- Restricted to NLL for Signal-Background interference.

[Campbell, Ellis, Williams 1107.5569]

くほと くほと くほと March 26, SCET 2014

Higgs Mediated Contribution

 Use Higgs mediated off-shell contribution to assess impact of NNLL terms:

 \implies First sensitive to jet algorithm at NNLL: $\log\left(\sqrt{\hat{s}}/\rho_T^{veto}\right)\log R$

- Normalize result by suppression at *m_H*. Focus on modification to the shape.
- Large \hat{s} dependent suppression.
- NNLL, NLL results similar.
 - \implies NLL captures dominant modification to shape.

This is important for interference, where we are restricted to NLL.

 $\sigma_H \sim$

Jet Vetoes Interfering with $H \rightarrow WW$

Resummed Predictions for Signal-Background Interference

- Consider effect on two different Higgs masses.
- Normalize the NLL distributions to the jet veto suppression at *m_H*. Shows the suppression of the interference relative to the on-shell contribution, due to the jet veto: strong *ŝ* dependence.

Jet veto can enhance or suppress relative size of interference.

lan Moult (MIT)

From 8 TeV to 13 TeV

- At 13 TeV, large increase in gluon luminosity at high \hat{s} .
- Enhancement of off-shell effects and of the impact of the jet veto.

Higgs Width Bounds

Recall three scalings:

[Caolo, Melnikov 1307.4935] [Campbell, Ellis, Williams 1311.3589,1312.1628]

- Apply cuts such that B, C = 0: $0.75m_H < M_T < m_H$
- Compute normalization between theory prediction and experiment independent of Γ_H (Originally due to jet veto, and K-factors).
- Apply cuts such that A = 0: $M_T > 300 \text{GeV}$ to maximize sensitivity to Γ_H .
- Place bounds on the Higgs width using previously calculated normalization.

Relies on accurate theory prediction for the shape of m_{41} distribution!

NLL result captures this.

イロト イポト イヨト イヨト 二日

Higgs Width Bounds

- Jet Veto modifies the shape of the differential distribution.
- Zero jet cross-section in far off-shell region reduced by factor of \sim 2 relative to on-shell contribution.

Inclusion of Jet veto effects essential when comparing cross section at widely separated $m_{4/}$.

Weakens bound on Γ_H by a factor of 2-4.

 $m_{H} = 126 \,\,{\rm GeV}$

March 26, SCET 2014

Higgs Width Bounds

- Jet Veto modifies the shape of the differential distribution.
- Zero jet cross-section in far off-shell region reduced by factor of \sim 2 relative to on-shell contribution.

Inclusion of Jet veto effects essential when comparing cross section at widely separated $m_{4/}$.

Weakens bound on Γ_H by a factor of 2-4.

 $m_{H} = 126 \,\,{\rm GeV}$

March 26, SCET 2014

Conclusions

- Jet Vetoes have important consequences when studying observables that contribute over a large range of \hat{s} . In particular, they reshape differential distributions.
- Large impact on the recent program to extract the Higgs width from off-shell cross section measurements, modifying the bounds by a factor of 2 4.
- Resummed predictions for the off-shell cross section including signal-background interference allow this region to be used as a sensitive probe of BSM physics.