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What can we learn about 
BSM from Higgs properties ?

• Higgs signal strength ~ SM like	


• H to diphoton may require new charged 
particles at EW scale	


• There could be an additional singlet scalar 
that mixes with the SM Higgs boson 
(especially motivated by hidden sector DM 
with Higgs portal or singlet portal)	


• We include “S” explicitly in Eff Lagrangian



Basic Picture



Assumptions

• Impose the full SM gauge symmetry, not 
just its unbroken subgroup	


• Assume there is an additional SM singlet 
scalar, extra vector-like fermions, hDM etc	


• “S” could be a remnant of the spontaneous 
breaking of extra gauge symmetry such as 
U(1) B-L 	


• Our assumptions encompass a large class 
of BSMs



• Orthogonal ways to modify the same observable.	


• Information on individual direction will be lost/hidden 
if no proper basis is used. Interpretation of data 
depends on basis.	


• Our framework is suitable to get insight on singlet 
mixing, singlet couplings as well as Higgs couplings.

2HDM, 4th generation, mirror fermions etc.

hidden sector DM, extra W’, 	

vectorlike fermions, etc.

h-s mixing from 	

dim-2 operator



so, we can separate two di↵erent sources of the modified Higgs properties, one from direct

couplings of new particles to the SM Higgs boson (bi 6= 1 in Fig. 1), and the other from

the mixing with a singlet scalar boson (↵ 6= 0 in Fig. 1). There could be new particles that

have gauge invariant renormalizable couplings to the singlet scalar s (ci 6= 0 in Fig. 1), but

not to the SM Higgs boson h. Therefore studying the Higgs properties in the 3-dimensional

space (ignoring the dimensionality associated with the index i) as depicted in Fig. 1 can

be justified, and its importance could be appreciated.

2.1 E↵ective Lagrangian for the SM Higgs boson h

Let us assume that the SM Higgs boson couplings are modified due to some new physics

e↵ects even without the mixing with a singlet scalar s(x). This could happen if there are

additional sequential or mirror fermions (chiral), or extra inert scalar doublet, for example.

Integrating out the new heavy particles, one can construct the e↵ective Lagrangian up to

dim-5 and dim-6 operators, all of which have been identified by Buchmuller and Wyler

sometime ago [? ]. We do not reproduce all the operators involving the Higgs fields, but

list only some of them just for illustration:

H†H Ga
µ⌫G

aµ⌫ , (H†DµH)(HDµH†), H†H Q
3LH̃tR,

relegating the complete list to the original paper [? ].

Expand the Higgs field in the e↵ective Lagrangian constructed by Buchmuller and

Wyler around the EW vacuum with

H(x) =

 

0

v + h(x)

!

,

we obtain the following e↵ective operators of interaction eigenstate h(x) field upto dim-6:
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where f in the first term of the Lagrangian denotes the SM fermions. The Higgs field h(x)

is defined after the EWSB: H(x) = v + h(x), and before any possible mixing with a singlet

scalar s which will be introduced shortly.
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2.2 E↵ective Lagrangian for a singlet scalar boson s

As in the case of the e↵ective Lagrangian of the SM Higgs field H(x) up to dim-6, one

can construct e↵ective Lagrangian involving a singlet S(x) and the SM fields un to dim-6,

imposing the SM gauge symmetry SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Note that there are only a

few operators describing interactions between S and the SM Higgs boson at renormalizable

level:

S H†H, S2 H†H,

in addition to the singlet self couplings: S3 and S4. These operators lead to the modified

self couplings of two Higgs-like scalar bosons H
1

and H
2

after the EWSB and the mass

mixing between h and s, as described in Sec. 2.3 below.

Interactions between the singlet scalar S and the SM chiral fermions and the SM

gauge bosons occur only at the nonrenormalizable level due to the SM gauge symmetry,

SU(3)C ⇥ SU(2)L ⇥ U(1)Y . As an example, we list a few of them:

S Ga
µ⌫G

aµ⌫ , S2 Ga
µ⌫G

aµ⌫ , S DµH†DµH, S2 DµH†DµH,

S Q
3L

eHtR, , S2 Q
3L

eHtR,

etc.. We consider most general Lagrangian without any symmetry such as Z
2

symmetry

under S ! �S. It would be a separate question what kind of new underlying physics

would generate such dim-5 or dim-6 operators.

The singlet scalar field S(x) may develop a nonzero VEV independent of the EWSB:

S(x) = vS + s(x).

Expanding around vS , we define the physical singlet scalar s(x) in the interaction basis.

Then, the e↵ective Lagrangian for the singlet interaction eigenstate scalar boson s

could be written as
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The newly introduced couplings ci’s multiplicatively parameterize the couplings of s with

respect to corresponding SM couplings. The singlet interaction eigenstate s(x) is defined

after the symmetry breaking due to possible nonzero VEV of a singlet scalar field S(x)

but before mixing with the SM Higgs field h. The last term LnonSM represents possible

interactions of the singlet scalar s with non-SM particles such as dark matter in some
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SM Higgs

Singlet Scalar S



Typical Sizes of b,c’s

Interactions between the singlet scalar S and the SM chiral fermions and the SM gauge
bosons occur only at the nonrenormalizable level due to the full SM gauge symmetry1,
SU(3)C ⇥ SU(2)L ⇥ U(1)Y . As an example, we list a few of them:

S Ga
µ⌫G

aµ⌫ , S2 Ga
µ⌫G

aµ⌫ , S DµH
†DµH, S2 DµH

†DµH,

S Q
3L

eHtR, , S2 Q
3L

eHtR,

etc.. We considered the most general Lagrangian without any symmetry such as Z
2

sym-
metry under S ! �S which is often invoked in the real singlet scalar DM models. It would
be a separate question what kind of new underlying physics would generate such dim-5 or
dim-6 operators, which we don’t address in this paper.

The singlet scalar field S(x) may develop a nonzero VEV independent of the EWSB:

S(x) = vS + s(x).

Expanding around vS , we define the physical singlet scalar s(x) in the interaction basis.
Then, the effective Lagrangian for the singlet interaction eigenstate scalar boson s could
be written as
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�µ⌫

+

↵
2

⇡

⇢

2fcdZ
s

v
+ gcdZ0

⇣s

v

⌘

2

�

Zµ⌫
gZµ⌫

+

↵

⇡

⇢

2cZ�
s

v
+ cZ�0

⇣s

v

⌘

2

�

Fµ⌫Z
µ⌫ � LnonSM (2.11)

The newly introduced couplings ci’s parameterize the couplings of s to the SM particles in
a similar way to the SM Higgs (h) couplings to the SM particles. The singlet interaction
eigenstate s(x) is defined after the symmetry breaking due to possible nonzero VEV of a
singlet scalar field S(x) but before mixing with the SM Higgs field h. The last term LnonSM

represents possible interactions of the singlet scalar s with non-SM particles such as dark
matter in some dark matter models such as hidden sector dark matter models. We do not
specify this Lagrangian, but we will parameterize this effect by non-standard branching
ratio in later sections.

Since all the couplings c’s are from nonrenormalizable interactions between the singlet
scalar S and the SM fields (except for the Higgs fields), one can assume that c’s are all
suppressed by heavy mass scale and/or the loop suppression factors:

ci ⇠ “0” +

g2m2

(4⇡)2M2

, “0” +

g2m2

M2

,

1As discussed in Sec. 1, the singlet scalar could have renormalizable interactions Sf̄f with the SM
fermions if we imposed only the unbroken part of the SM gauge symmetry. However this can lead to
erroneous results as demonstrated in Refs. [52–54] in the context of Higgs portal DM models.
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b� = bWBW + btBt + �b� (2.6)

Note that bg,� (and their �b) are normalized to the corresponding SM couplings. bt and
bW parts describe effects from modification of top and W boson couplings to Higgs that
are involved in loop diagrams. The relative loop-functions of W boson and top quark for
mh = 125 GeV are given by

Ct = 1 (2.7)

BW =

A
1

(⌧W )

A
1

(⌧W ) + NcQ2

tA1/2(⌧t)
' 1.283, (2.8)

Bt =

NcQ
2

tA1/2(⌧t)

A
1

(⌧W ) + NcQ2

tA1/2(⌧t)
' �0.283. (2.9)

These parameters bi’s may have momentum(mass) dependence. We define these variables
at 125GeV relevant to the global fit to 125GeV resonance data.

In most part of this paper, we work on the 125GeV resonance, thus we can conveniently
assume that bi do not have mass dependence. However, for bg and b� which are loop-induced
couplings, we will discuss mass dependence in Sec. 6 when we study constraints on other
particles. We also assume that these parameters are real. This assumption would be good
as long as the loop diagram does not develop unitarity phase from the case where the loop
particles are on-shell. Considering various constraints on new charged or colored particles,
it would be reasonable to assume that there are no new charged or colored particles with
mass less than mH/2 ' 63GeV.

In the presence of new particles with nonzero EW gauge charges (e.g., another Higgs
doublet as in 2 Higgs doublet model, extra sequential fermions or mirror fermions), both
tree level processes h ! W+W�, Z0Z0 and the loop process h ! gg, �� can be modified,
resulting in bV 6= 1 and b� 6= 1 and bg 6= 1. Except for the 2HDM case, these new physics
effects will appear at one loop level, and we would expect that

bi ⇠ “1” +

g2m2

(4⇡)2M2

, or “1” +

g2m2

M2

where m is the external SM particle mass, M is the mass of new particles in the loop, and
g is the couplings between them.

2.2 Effective Lagrangian for a singlet scalar boson s

As in the case of the effective Lagrangian of the SM Higgs field H(x) up to dim-6, one
can construct effective Lagrangian involving a singlet S(x) and the SM fields up to dim-6,
imposing the SM gauge symmetry SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Note that there are only a
few operators describing interactions between S and the SM Higgs boson at renormalizable
level:

S H†H, S2 H†H,

in addition to the singlet self couplings: S3 and S4, which lead to the modified self couplings
of two Higgs-like scalar bosons H

1

and H
2

after the EWSB and the mass mixing between
h and s, as described in Sec. 2.3 below.
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All the c_i’s from nonrenormalizable operators

we obtain the following effective operators of interaction eigenstate h(x) field upto dim-6:
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where f in the first term of the Lagrangian denotes the SM fermions. The Higgs field h(x)

is defined after the EWSB: H(x) = v + h(x), and before any possible mixing with a singlet
scalar s which will be introduced shortly.

Most of dim-6 operators lead to the definite relation, bi = b
0
i, since they involve H†H

which yields (v + h)2. But this is not the case for bf and b
0
f . For example, the following

operators (qL ⌘ (tL, bL)), which are invariant under the full SM gauge group SU(3)C ⇥
SU(2)L ⇥ U(1)Y ,

qLDµbRD
µH, qLDµtRD

µ
eH,

contribute to the bf ⇠ m2

h/⇤
2, but not to b

0
f . Thus the relation bf = b

0
f is no longer true

for the Higgs couplings to the SM chiral fermions.
Modification to the SM Higgs Lagrangian is parameterized by multiplicative constants

bi and b
0
i, and the SM is recovered when all bi = b

0
i = 1. We are interested in

bf , bW , bZ , b� , bg (2.2)

among coefficients bi because these are most constrained by the current LHC data.
Loop-induced couplings of the SM higgs to photons and gluons involve loop functions

r
sm

defined in the SM as

r�
sm

= A
1

(⌧W ) + NcQ
2

tA1/2(⌧t) (2.3)
rg
sm

= A
1/2(⌧t) (2.4)

where we follow definitions of A
1

and A
1/2 as in Ref.[13], and ⌧i = m2

h/4m
2

i and v = 246

GeV. Loop effects of new physics is conveniently incorporated as additive shifts �b� and
�bg defined as

bg = btCt + �bg (2.5)
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• 125GeV Higgs (mass-eigenstate) is 
 
 
 
h: SU(2) doublet interaction eigenstate  
s: SU(2) singlet interaction eigenstate  
alpha: mixing angle (alpha=0 means SM-like)	


• h and s effective couplings are parameterized by 
{b_i}, {c_i}.  Some terms are shown below.  

H = h cos↵� s sin↵

NB: b_i=1, c_i=0 mean SM-like



• Models are ubiquitous, and 
singlet scalar is versatile:	


• If Hidden fermion is DM,  
s is needed for correct  
thermal relic density.  
 
 

• If an extra vector exists, s should break gauge symmetry. 
Gauge symmetry may needed for various reasons: just 
another force, or ensuring DM stability, etc...	


• Condensation can provide new mass scale.



Building Blocks of SM

• Lorentz/Poincare Symmetry	


• Local Gauge Symmetry : Gauge Group + 
Matter Representations from Experiments	


• Higgs mechanism for masses of  weak 
gauge bosons and SM chiral fermions	


• These principles lead to unsurpassed 
success of the SM in particle physics



Lessons for Model Building

• Specify local gauge sym, matter contents and 
their representations under local gauge group	


• Write down all the operators upto dim-4	


• Check anomaly cancellation	


• Consider accidental global symmetries 	


• Look for nonrenormalizable operators that 
break/conserve the accidental symmetries of 
the model



• If there are spin-1 particles, extra care 
should be paid : need an agency which 
provides mass to the spin-1 object	


• Check if you can write Yukawa couplings to 
the observed fermion	


• One may have to introduce additional Higgs 
doublets with new gauge interaction if you 
consider new chiral gauge symmetry (Ko, 
Omura, Yu on chiral U(1)’ model for top FB 
asymmetry)	


• Impose various constraints and study 
phenomenology



(3,2,1) or SU(3)cXU(1)em ?

• Well below the EW sym breaking scale, it may 
be fine to impose SU(3)c X U(1)em	


• At EW scale, better to impose (3,2,1) which 
gives better description in general after all	


• Majorana neutrino mass is a good example	


• For example, in the Higgs + dilaton (radion) 
system, and you get different results (work in 
with D.W.Jung, in PLB)



Issue here is whether 	

we use 

The other modes are consistent with the SM predictions, but within a large uncertainty.

The e↵ective interaction Lagrangian for a dilaton � to the SM field can be derived by

using nonlinear realization: � = e
�
f� [1]. With the trace of the energy momentum tensor,

which is the divergence of dilatation current, the interaction terms which are linear in � cast

into

Lint ' � �
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(1)

where mH is the Higgs mass in the broken phase of the SM gauge group. We argue that

this form of dilaton interaction to the SM fields may not be proper, since only the unbroken

subgroup of the SM gauge symmetry has been imposed on T µ
µ. If we imposed the full SM

gauge symmetry on T µ
µ, the more proper form of the dilaton couplings to the SM should be

described by Eq. (3) below, which is completely di↵erent from Eq. (1).

The SM Lagrangian is written as

LSM = Lkin(G) + Lkin(f) + Lkin(H) + LYukawa(f, f̄ , H)� µ2
HH

†H � �
�

H†H
�2

, (2)

where G, f and H denote the SM gauge fields, fermions and Higgs field in a schematic

way. In this form, scale symmetry is explicitly broken by a single term, µ2
HH

†H in the

SM. Also quantum mechanical e↵ects break scale symmetry anomalously. In the end, the

trace of energy-momentum tensor of the SM, which measures the amount of scale symmetry

breaking, is given by

T µ
µ(SM) = 2µ2

HH
†H +

X

G

�G

gG
Gµ⌫G

µ⌫ . (3)

This form of T µ
µ respects the full SM gauge symmetry GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y .

This form is clearly di↵erent from the usual form, Eq. (1), which is constructed after EWSB

and respects only the unbroken subgroup of the SM, HSM = SU(3)C ⇥ U(1)em. We claim

that one has to use the form before EWSB, since we do not know the scale of spontaneous

scale symmetry breaking. If vEW < f�, it would be more reasonable to impose the full SM

gauge symmetry with Eq. (3) [68]. This point should be even more evident for the radion in

the Randall-Sundrum scenario, since the existence of the radion � is independent of EWSB,
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Now the interaction Lagrangian between dilaton and the SM fields can be derived in terms

of H1 and H2.

B. Interaction Lagrangian for dilaton(radion) and the SM Fields

In this subsection, we derive the interaction Lagrangian between the dilaton(radion) and

the SM fields both in the interaction and in the mass eigenstate basis.

Let us first discuss the interactions of the dilaton(radion) with the SM fermions and the

SM Higgs boson with the full GSM:

L(f, f̄ , Hi=1,2) = �mf

v
ffh = �mf

v
ff(H1c↵ +H2s↵), (13)

with s↵ ⌘ sin↵ and c↵ = cos↵. The first equality is in the interaction basis, whereas the

second one is in the mass basis. Note that there is no direct coupling of the dilaton(radion)

(�) to the SM chiral fermion at the classical level, namely when we ignore the quantum

scale anomaly of Yukawa interactions. This is because we have imposed the full SM gauge

symmetry, Eq. (3). On the other hand, earlier literature uses the following dilaton couplings

to the SM fermions assuming the unbroken subgroup HSM = SU(3)C ⇥ U(1)Y :

L(f, f̄ ,�) = �mf

f�
f̄f� e��̄/f� . (14)

Note that there is no proper limit where the earlier result (14) based on T µ
µ with unbroken

subgroup of the SM gauge symmetry HSM = SU(3)C ⇥ U(1)em approaches our result (13)

based on T µ
µ with the full SM gauge symmetry GSM = SU(3)C⇥SU(2)L⇥U(1)Y . This shows

that it is very important to impose which gauge symmetry on the fundamental Lagrangian.
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In the usual earlier approach, one has

In the new approach, one has

These two lead to very different predictiontions 
for the Higgs phenomenology at the LHC, 
especially for H to diphoton, and gg fusion for H 
productions (see the paper for the details)



Digression on Higgs 
portal DM models



Based on the works  
(with S.Baek, Suyong Choi, P. Gondolo,T. Hur, D.W.Jung, Sunghoon 
Jung, J.Y.Lee, W.I.Park, E.Senaha, Yong Tang in various combinations)

• Strongly interacting hidden sector (0709.1218 PLB,1103.2571 PRL)	


• Light DM in leptophobic Z’ model (1106.0885 PRD)	


• Singlet fermion dark matter (1112.1847 JHEP)	


• Higgs portal vector dark matter (1212.2131 JHEP)	


• Vacuum structure and stability issues (1209.4163 JHEP)	


• Singlet portal extensions of the standard seesaw models 
with unbroken dark symmetry (1303.4280 JHEP) 	


• Hidden sector Monopole, VDM and DR (1311.1035) 	


• Self-interacting scalar DM with local Z3 sum  (1402.6449)



Main Motivations

• Origin of Mass (including DM, RHN) ?	


• Understanding DM Stability or Longevity ?	


• Assume the standard seesaw for neutrino 
masses and mixings, and leptogenesis for 
baryon number asymmetry of the universe	


• Assume minimal inflation models :  
Higgs(+singlet scalar) inflation, Starobinsky 
inflation 



Origin of Mass

• Massive SM particles get their masses from 
Higgs mechanism or confinement in QCD	


• How about DM particles ?  Where do their 
masses come from ?  	


• SM Higgs ? SUSY Breaking ? Extra Dim ?	


• Can we generate all the masses as in 
proton mass from dim transmutation in 
QCD ?  (proton mass in massless QCD)



• There are basically three different approaches on 
the origin of masses	


• Standard Higgs mechanism with fundamental 
scalars (SM, MSSM etc.)	


• Dynamical Symmetry Breaking : Technicolor, BCS 
(Hur and Ko; Kubo and Lindner et al)	


• Radiative Symmetry Breaking : Coleman-Weinberg 
mechanism (Recently renewed interests in this approach : 
Meissner & Nicolai; Okada & Iso et al; Lindner et al; and many 
more)	


• NB : If we consider extra dim, more options



Questions about DM
• Electric Charge/Color neutral 	


• How many DM species are there ?	


• Their masses and spins ?	


• Are they absolutely stable or very long lived ?	


• How do they interact with themselves and with 
the SM particles ?	


• Where do their masses come from ? Another 
(Dark) Higgs mechanism ? Dynamical SB ?	


• How to observe them ?



Underlying Principles
• Hidden Sector CDM	


• Singlet Portals (including Higgs portal)	


• Renormalizability (with some caveats) 	


• Local Dark Gauge Symmetry (unbroken or 
spontaneously broken) : Dark matter feels 
gauge force like most of other particles & 
DM is stable for the same reason as 
electron is stable

(Alternative models by Asaka, Shaposhnikov et al.)



DM is stable because...

• Symmetries

• Very small mass and weak coupling

- (ad hoc) Z2 symmetry	

- R-parity	

- Topology (from a broken sym.)

e.g: QCD-axion (ma ~ ΛQCD2/fa; fa~109-12 GeV)

�a ⇠ O(10�5)
m3

a

f2
a

⌧ H0 ⇠ 10�42GeV
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But for WIMP ...

• Global sym. is not enough since

• SM is guided by gauge principle

⇒ WIMP is unlikely to be stable

It looks natural and may need to consider 
a gauge symmetry in dark sector, too.

Observation requires [M. Ackermann et al. (LAT Collaboration), PRD 86, 022002 (2012)]

⌧DM & 1026�30sec )
⇢

m� . O(10)keV
m . O(1)GeV

�Lint =

(
� �

MP
Fµ⌫Fµ⌫ for boson

� 1
MP

¯ �µDµ`LiH
†

for fermion
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Hidden Sector

• Any NP @ TeV scale is strongly constrained by 
EWPT and CKMology	


• Hidden sector made of SM singlets, and less 
constrained, and could be CDM	


• Generic in many BSM’s including SUSY models	


• E8 X E8’ : natural setting for SM X Hidden	


• SO(32) may be broken into GSM X Gh



Hidden Sector

• Hidden sector gauge symmetry can stabilize 
hidden DM 	


• There could be some contributions to the dark 
radiation from unbroken dark sector 	


• Consistent with GUT in a broader sense	


• Can address “QM generation of all the mass 
scales from strong dynamics in the hidden 
sector” (alternative to the Coleman-Weinberg) : Hur and Ko, PRL (2011) 
and earlier paper and proceedings



How to specify hidden sector ?

• Gauge group (Gh) : Abelian or Nonabelian	


• Strength of gauge coupling : strong or weak	


• Matter contents :  singlet, fundamental or 
higher dim representations of Gh	


• All of these can be freely chosen at the 
moment : Any predictions possible ?	


• But there are some generic testable features in 
Higgs phenomenology and dark radiation



Known facts for hCDM

• Strongly interacting hidden sector	


• CDM : composite h-mesons and h-baryons	


• All the mass scales can be generated from 
hidden sector	


• No long range dark force	


• CDM can be absolutely stable or long lived

SB), and by SRC program of NRF Grant No. 20120001176 funded by MEST through Korea Neutrino

Research Center at Seoul National University (PK).

A Thermally averaged cross sections

In this Appendix, we collect the thermally averaged cross sections of dark matter pair annihilations.

h�viXX†!f̄f =
1

32⇡
Nf

c �2
HX

m2
f�

s � m2
h

�2
+ m2

h�
2
h

 
1 � 4m2

f

s

!3/2

(A.1)

h�viXX†!V V =
1

64⇡

�2
HX

S

s
�
s � m2

h

�2
+ m2

h�
2
h

"
1 � 4

m2
V

s
+ 12

✓
m2

V

s

◆2
#✓

1 � 4m2
V

s

◆1/2

(A.2)

h�viXX†!hh =
1

64⇡s

✓
1 � 4m2

h

s

◆1/2 Z 1

�1
d cos ✓|A|2 (A.3)

where the symmetry factor is S = (1, 2) for V = (W, Z) respectively, and

|A|2 =
1

4
�2
HX

�����1 � 3m2
h�

s � m2
h

�
+ imh�h

+
1

2

�HXv2

m2
X � t

+
1

2

�HXv2

m2
X � u

�����

2

(A.4)
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• Weakly interacting hidden sector	


• Long range dark force if Gh is unbroken	


• If Gh is unbroken and CDM is DM, then no 
extra scalar boson is necessary (*)	


• If Gh is broken, hDM can be still stable or 
decay, depending on Gh charge assignments	


• More than one neutral scalar bosons with signal 
strength = 1 or smaller (indep. of decays) 
except for the case (*)	


• Vacuum is stable up to Planck scale
S.Baek, P.Ko, W.I.Park, E.Senaha, JHEP (2012)



Models Unbroken 
U(1)X

Local Z2 Unbroken 
SU(N)

Unbroken 
SU(N)	


(confining)

Scalar DM

1	

0.08	


complex 
scalar

<1	

~0	


real scalar

1	

~0.08*#	

complex 

scalar

1	

~0	


composite	

hadrons

Fermion 
DM

<1	

0.08	

Dirac	


fermion

<1	

~0	


Majorana

<1	

~0.08*#	

Dirac 

fermion

<1	

~0	


composite	

hadrons

Higgs signal strength/Dark radiation/DM

# : The number of massless gauge bosons

in preparation with Baek and W.I. Park



Singlet Portal

• If there is a hidden sector, then we need a 
portal to it in order not to overclose the 
universe	


• There are only three unique gauge singlets 
in the SM + RH neutrinos

H†H, Bµ⌫ , NRSM Sector Hidden Sector

NR $ eHlL



 General Comments

• Many studies on DM physics using EFT	


• However we don’t know the mass scales of 
DM and the force mediator	


• Sometimes one can get misleading results	


• Better to work in a minimal renormalizable 
and anomaly-free models 	


• Explicit examples : singlet fermion Higgs 
portal DM, vector DM, Z2 scalar CDM   



Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 

Higgs portal DM as examples
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS � 1

2
m2

SS
2 � �HS

2
H†HS2 � �S

4
S4 (1.1)

Lfermion =  [i� · @ �m ] � �H 
⇤

H†H   (1.2)

Lvector = �1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 	

under ad hoc 	

Z2 symmetry
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(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to
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Higgs portal DM as examples

• Scalar CDM : looks OK, renorm. .. BUT .....	


• Fermion CDM : nonrenormalizable	


• Vector CDM : looks OK, but it has a number of 
problems (in fact, it is not renormalizable)

All invariant 	

under ad hoc 	

Z2 symmetry



Usual story within EFT

• Strong bounds from direct detection exp’s put 
stringent bounds on the Higgs coupling to the 
dark matters	


• So, the invisible Higgs decay is suppressed	


• There is only one SM Higgs boson with the 
signal strengths equal to ONE if the invisible 
Higgs decay is ignored	


• All these conclusions are not reproduced in 
the full theories (renormalizable) however
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The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (1)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (2)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (3)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (4)

In general the Higgs potential develops nontrivial vacuum expectation values
(vev)

⇤H⌅ = 1⇧
2

�
0
vH

⇥
, ⇤S⌅ = vS. (5)

1

ΨSM H S

mixing

invisible	

decay

Production and decay rates are suppressed relative to SM.

36
 This simple model has not been studied properly !!

Singlet fermion CDM



• Mixing and Eigenstates of Higgs-like bosons

Ratiocination

at vacuum

Mixing of Higgs and singlet



• Signal strength (reduction factor)

0< α < π/2 ⇒ r₁(r₂) < 1	

Invisible decay mode is not necessary! 

38

Ratiocination

If r_i > 1 for any single channel, 	

this model will be excluded !!



Constraints
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! 0.2

! 0.1
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0.2

0.3

0.4

S

T

EW precision observables
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α=π/9, π/4	

m_h(ref)=120 GeV	

115< m_h < 750 GeV 	

30.< m₁ < 150 GeV	

150< m₂< 750 GeV

Same for T and U

2 Dark matter to nucleon cross section

In the model we are considering,

⌅p ⌅ 1

⇤
m2

pf
2
p (14)

⇧ 1

⇤
m2

p

⇤
0.164

mp

v
⇥ sin� cos�

�
1

m2
1

� 1

m2
2

⇥⌅2
(15)

⇧ 5⇥ 10�9pb

�
⇥ sin� cos�

0.1

⇥2 �143GeV

m1

⇥4 �
1� m2

1

m2
2

⇥2

(16)

⌅p ⌅
1

⇤
m2

pf
2
p ⇧ 1

⇤
m2

p

⇤
0.164

mp

v
⇥ sin� cos�

�
1

m2
1

� 1

m2
2

⇥⌅2
(17)

3 Electroweak precision observables

STU-parameters [1]

�emS = 4s2W c2W

⇤
�ZZ(M2

Z)� �ZZ(0)

M2
Z

⌅
(18)

�emT =
�WW (0)

M2
W

� �ZZ(0)

M2
Z

(19)

�emU = 4s2W

⇤
�WW (M2

W )� �WW (0)

M2
W

⌅
(20)

VWX-parameters

�emV = �⇥
ZZ(M

2
Z)�

�S

4s2W c2W
(21)

�emW = �⇥
WW (M2

W )� �U

4s2W
(22)

In case of a singlet mixed with Higgs,

�emS = cos2 � �emS(m1) + sin2 � �emS(m2) (23)

4 Dark matter relic density

⇥CDM ⇤ 0.11

�
10�36cm2

⌃⌅v⌥fz

⇥
(24)

3

Peskin & Takeuchi, Phys.Rev.Lett.65,964(1990)

U=0



• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints
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Field contents
⇥ , ⇥̄ (1)

The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,
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EFT does not give a good description



• We don’t use the effective lagrangian approach 
(nonrenormalizable interactions), since we don’t 
know the mass scale related with the CDM

- Only one Higgs boson (alpha = 0) 	


- We cannot see the cancellation between two Higgs scalars in 
the direct detection cross section, if we used the above 
effective lagrangian	


- The upper bound on DD cross section gives less stringent 
bound on the possible invisible Higgs decay

�h  or



• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints
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Signal Strengths µ ≡
σ · Br

σ
SM

· Br
SM

ATLAS CMS
Decay Mode (MH = 125.5 GeV) (MH = 125.7 GeV)

H → bb −0.4± 1.0 1.15± 0.62
H → ττ 0.8± 0.7 1.10± 0.41
H → γγ 1.6± 0.3 0.77± 0.27

H → WW ∗ 1.0± 0.3 0.68± 0.20
H → ZZ ∗ 1.5± 0.4 0.92± 0.28
Combined 1.30± 0.20 0.80± 0.14

⟨µ⟩ = 0.96± 0.12

Higgs Physics A. Pich – LHCP 2013 9

Updates@LHCP

Getting smaller



Vacuum Stability Improved 
by the singlet scalar S

why do we live on the ragged edge of doom?

36

• if you believe in supersymmetry, then this is just a coincidence

• but dismissing striking features of the data as coincidence has 
historically not been a winning strategy...

A. Strumia, Moriond EW 2013

Joseph Lykken                                                                                                                            LHCP 2013, Barcelona, May 18, 2013
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Figure 13. RG-running of couplings as a function of renormalization scale for m1 =

125GeV, m2 = 500GeV and α = 0.1, but λHS = 0, i.e, mixing but no-loop correction.

Red/blue/green/dashed-blue line corresponds to λH/λHS/λ/λS .
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Figure 14. The mass bound of SM-like Higgs (m1) as a function of energy scale for

(α,λHS) = (0, 0.2)(left),(0.1, 0)(right) with λS = 0.1 and λ = 0.4. The red/blue line

corresponds to triviality/vacuum-stability bound in SM(dashed) and our model(solid). The

dashed black line corresponds to m1 = 125GeV.

5.4 Brief Summary

In brief summary, the numerical analysis shows that the vacuum stability of Higgs
potential and perturbativity of couplings constrains new dimensionless couplings of

– 29 –

Baek, Ko, Park, Senaha (2012)



Similar for Higgs portal Vector DM

• Although this model looks renormalizable, it is 
not really renormalizable, since there is no agency 
for vector boson mass generation	


• Need to a new Higgs that gives mass to VDM	


• Stueckelberg mechanism ?? (work in progress)	


• A complete model should be something like this:

3.6 Comparison with the e↵ective lagrangian approach

In this subsection, we would like to compare our model with the so-called Higgs

portal fermion dark matter model [22], where the singlet scalar S is presumed to be

integrated out, resulting in the following model lagrangian:

Le↵ =  

✓
m0 +

H†H

⇤

◆
 . (3.13)

Within this model, there is only one Higgs boson and its coupling to the DM is

strongly constrained by the direct detection experiments. This result is very di↵er-

ent from our analysis [2], where there is a generic cancellation between H1 and H2

contributions in the direct detection rates. In fact, �SI depends also on (sin↵ cos↵)2,

and it becomes zero when we ignore the mixing between the SM Higgs boson and the

singlet scalar S (see Eq. (3.16) of Ref. [2]). This result can never be obtained in the

approach based on the above e↵ective lagrangian (3.13). In our case the correlation

between Hi� � and the direct detection cross section is not that strong compared

with the results in Ref. [22]. It is important to consider the renormalizable models

in order to discuss phenomenology related with the singlet fermion dark matter and

Higgs bosons.

The same arguments also applies to the Higgs portal vector DM models, which

is assumed to be described by the following lagrangian:

L = �m2
V VµV

µ � �V H

4
H†HVµV

µ � �V
4
(VµV

µ)2 . (3.14)

Although this lagrangian looks power-counting renormalizable, it is not really renor-

malizable. This is well known from the old intermediate vector boson theory for

weak gauge boson W±. In order to give a mass to a spin-1 gauge boson, we need

some symmetry breaking agency. Assuming a new complex scalar �X breaks the

gauge symmetry spontanesouly, one ends up with a new scalar boson from �X which

would mix with the SM Higgs boson by Higgs portal. Therefore there will be two

Higgs-like scalar boson in the end, and phenomenology in the scalar sector should

be similar to that of the model described here and in Ref. [2]. We leave the detailed

discussions of this issue for the future publication [21].

4 Vacuum structure

Because of the presence of the singlet scalar, the vacuum structure of this model is

not that trivial. Since the Higgs potential is the quartic function of the Higgs fields

(at the tree level), there could be another nondegererate local minimum in the singlet

Higgs direction unless some symmetry exists. If that is the case, our EW vacuum

may not be global and its stability is unclear. In addition to this, as we mentioned

in Introduction, the EW vacuum could be destabilized at a high energy scale by the

– 9 –



• There appear a new singlet scalar h_X from phi_X , which 
mixes with the SM Higgs boson through Higgs portal	


• The effects must be similar to the singlet scalar in the 
fermion CDM model	


• Important to consider a minimal renormalizable model to 
discuss physics correctly	


• Baek, Ko, Park and Senaha, arXiv:1212.2131 (JHEP)
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1 Introduction

In this paper, we revisit the Higgs-portal vector DM which is a U(1)X gauge boson including

the hidden sector scalar that would break U(1)X and give the mass to the vector DM Xµ.

2 Abelian Model

2.1 Abelian Model for vector dark matter

Let us consider a vector boson dark matter Xµ, which is assumed to be a gauge boson

associated with Abelian dark symmetry U(1)X . The simplest model will be without any

matter fields charged under U(1)X except for a complex scalar �X whose VEV will generate

the mass for Xµ:

LV DM = �1

4
Xµ⌫X

µ⌫ +Dµ�
†
XDµ�X � �X

4
(�†

X�X � v2X)2 + �XH�†
X�XH†H (2.1)

in addition to the usual SM lagrangian.

Assuming that the U(1)X -charged �X develops a nonzero VEV and thus breaks U(1)X
spontaneously,

h0|�X |0i = vX + hX(x),

– 1 –

amount, unlike the claim made in literatures [1] based on the effective Lagrangian (1.2).

The decoupling of the 2nd scalar boson occurs rather slowly, since the mass mixing between

the SM Higgs boson and the new singlet scalar is due to the dim-2 operator. Also the mixing

between two scalar bosons makes the signal strength of two physical Higgs-like bosons less

than one, and make it difficult to detect both of them at the LHC. Since there is now an

evidence for a new boson at 125 GeV at the LHC [6, 7], the 2nd scalar boson in the singlet

fermion DM model is very difficult to observe at the LHC because its signal strength is

less than 0.3 [3, 8]. Also an extra singlet scalar saves the vacuum instability for mH = 125

GeV [8–10]. The electroweak (EW) vacuum can be still stable upto Planck scale even for

mH = 125 GeV [8]. These phenomena would be very generic in general hidden sector DM

models [11]. In short, it is very important to consider a renormalizable model when one

considers the phenomenology of a singlet fermion CDM.

Now let us turn to the Higgs portal vector dark matter described by (1.3) [1]. This

model is very simple, compact and seemingly renormalizable since it has only dim-2 and

dim-4 operators. However, it is not really renormalizable and violates unitarity, just like the

intermediate vector boson model for massive weak gauge bosons before Higgs mechanism

was developed. The Higgs portal VDM model based on (1.3) is a sort of an effective

lagrangian which has to be UV completed. It lacks including the dark Higgs field, ϕ(x),

that would mix with the SM Higgs field, h(x). Therefore the model (1.3) does not capture

dark matter or Higgs boson phenomenology correctly. It is the purpose of this work to

propose a simple UV completion of the model (1.3), and deduce the correct phenomenology

of vector CDM and two Higgs-like scalar bosons. Qualitative aspects of our model are

similar to those presented in Ref.s [3, 8], although there are some quantitative differences

due to the vector nature of the CDM.

This work is organized as follows. In Sec. 2, we define the model by including the

hidden sector Higgs field that generates the vector dark matter mass by the usual Higgs

mechanism. Then we present dark matter and collider phenomenology in the following

section. The vacuum structure and the vacuum stability issues are discussed in Sec. 4, and

the results are summarized in Sec. 5.

2 Model

Let us consider a vector boson dark matter, Xµ, which is assumed to be a gauge boson

associated with Abelian dark gauge symmetry U(1)X . The simplest model will be without

any matter fields charged under U(1)X except for a complex scalar, Φ, whose VEV will

generate the mass for Xµ:

LV DM = −1

4
XµνX

µν + (DµΦ)
†(DµΦ)− λΦ

4

(
Φ†Φ− v2Φ

2

)2

−λHΦ

(
H†H − v2H

2

)(
Φ†Φ− v2Φ

2

)
, (2.1)

in addition to the SM lagrangian. The covariant derivative is defined as

DµΦ = (∂µ + igXQΦXµ)Φ,

– 2 –
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Figure 6. The scattered plot of σp as a function of MX . The big (small) points (do not) satisfy the
WMAP relic density constraint within 3 σ, while the red-(black-)colored points gives r1 > 0.7(r1 <
0.7). The grey region is excluded by the XENON100 experiment. The dashed line denotes the
sensitivity of the next XENON experiment, XENON1T.

Since there is additional direction of Φ, the Higgs potential can have minima other than

our EW vacuum. In the following, we investigate whether the EW vacuum is global or not.

We closely follow the analysis done in Ref. [8].

– 9 –

Allowed Region

Allowed Region

Figure 8. The vacuum stability and perturbativity constraints in the ↵-m2 plane. We take
m1 = 125 GeV, gX = 0.05, MX = m2/2 and v� = MX/(gXQ�).

where we have used Eq. (4.8) in the second line. Therefore, as long as Eqs. (4.1) and (4.2)

are satisfied, the EW vacuum is always the global minimum. Note that this is not the case

for the generic Higgs potential [11].

Although the EW vacuum is stable at the EW scale, its stability up to Planck scale

(MPl ' 1.22⇥1019 GeV) is nontrivial question since a renormalization group (RG) e↵ect of

the top quark can drive �H negative at certain high-energy scale, leading to an unbounded-

from-below Higgs potential or a minimum that may be deeper than the EW vacuum. We

will work out this question by solving RG equations with respect to the Higgs quartic

couplings and the U(1)X gauge coupling. The one-loop � functions of those couplings are

listed in Appendix A. In addition to the vacuum stability, we also take account of the

perturbativity of the couplings. To be specific, we impose �i(Q) < 4⇡ (i = H,H�,�) and

g2X(Q) < 4⇡ up to Q = MPl.

Fig. 8 shows the vacuum stability and the perturbativity constraints in the ↵-m2 plane.

We take m1 = 125 GeV, gX = 0.05, MX = m2/2 and v� = MX/(gXQ�). The vacuum

stability constraint is denoted by red line; i.e., the region above the red line is allowed

for ↵ > 0, and it is the other way around for ↵ < 0. The perturbativity requirement is

represented by blue line; i.e., the region below the blue line is allowed for ↵ > 0, and it is the

other way around for ↵ < 0. For ↵ < 0, the region above the dotted black line is excluded

by Eq. (4.1). Putting all together, for ↵ > 0 the region between the red and blue lines

is allowed while for ↵ < 0 the region between the dotted black and blue lines is allowed.

– 13 –

New scalar improves 	

EW vacuum stability 



Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 

With renormalizable lagrangian, 	

we get different results !
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However, this crossing relation could 	

lead to incorrect physics quite often !	

Better to be careful, and work in more	


complete models for ID or CS.



• Sometimes we need new fields beyond the SM 
ones and the CDM, in order to make DM models 
realistic and theoretically consistent	


• If there are light fields in addition to the CDM, the 
usual Eff. Lag. with SM+CDM would not work	


• Better to work with minimal renormalizable 
model	


• See papers by Ko, Omura, Yu on the top FB asym 
with leptophobic Z’ coupling to the RH up-type 
quarks only : new Higgs doublets coupled to Z’ 
are mandatory in order to make a realistic model 

General Remarks



Back to the main theme



• Orthogonal ways to modify the same observable.	


• Information on individual direction will be lost/hidden 
if no proper basis is used. Interpretation of data 
depends on basis.	


• Our framework is suitable to get insight on singlet 
mixing, singlet couplings as well as Higgs couplings.

2HDM, 4th generation, mirror fermions etc.

hidden sector DM, extra W’, 	

vectorlike fermions, etc.

h-s mixing from 	

dim-2 operator



so, we can separate two di↵erent sources of the modified Higgs properties, one from direct

couplings of new particles to the SM Higgs boson (bi 6= 1 in Fig. 1), and the other from

the mixing with a singlet scalar boson (↵ 6= 0 in Fig. 1). There could be new particles that

have gauge invariant renormalizable couplings to the singlet scalar s (ci 6= 0 in Fig. 1), but

not to the SM Higgs boson h. Therefore studying the Higgs properties in the 3-dimensional

space (ignoring the dimensionality associated with the index i) as depicted in Fig. 1 can

be justified, and its importance could be appreciated.

2.1 E↵ective Lagrangian for the SM Higgs boson h

Let us assume that the SM Higgs boson couplings are modified due to some new physics

e↵ects even without the mixing with a singlet scalar s(x). This could happen if there are

additional sequential or mirror fermions (chiral), or extra inert scalar doublet, for example.

Integrating out the new heavy particles, one can construct the e↵ective Lagrangian up to

dim-5 and dim-6 operators, all of which have been identified by Buchmuller and Wyler

sometime ago [? ]. We do not reproduce all the operators involving the Higgs fields, but

list only some of them just for illustration:

H†H Ga
µ⌫G

aµ⌫ , (H†DµH)(HDµH†), H†H Q
3LH̃tR,

relegating the complete list to the original paper [? ].

Expand the Higgs field in the e↵ective Lagrangian constructed by Buchmuller and

Wyler around the EW vacuum with

H(x) =

 

0

v + h(x)

!

,

we obtain the following e↵ective operators of interaction eigenstate h(x) field upto dim-6:

�L
h,int =

X

f

bf
mf

v
hf̄f �

(

2bW
h
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+ b

0
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✓
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◆
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◆

2

)

W+

µ⌫Ŵ
�µ⌫ +

↵
2

⇡

(

2fbdZ
h

v
+ gbdZ0

✓

h

v

◆

2

)

Zµ⌫
gZµ⌫

+
↵

⇡

(

2bZ�
h

v
+ bZ�0

✓

h

v

◆

2

)

Fµ⌫Z
µ⌫ (2.1)

where f in the first term of the Lagrangian denotes the SM fermions. The Higgs field h(x)

is defined after the EWSB: H(x) = v + h(x), and before any possible mixing with a singlet

scalar s which will be introduced shortly.
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2.2 E↵ective Lagrangian for a singlet scalar boson s

As in the case of the e↵ective Lagrangian of the SM Higgs field H(x) up to dim-6, one

can construct e↵ective Lagrangian involving a singlet S(x) and the SM fields un to dim-6,

imposing the SM gauge symmetry SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Note that there are only a

few operators describing interactions between S and the SM Higgs boson at renormalizable

level:

S H†H, S2 H†H,

in addition to the singlet self couplings: S3 and S4. These operators lead to the modified

self couplings of two Higgs-like scalar bosons H
1

and H
2

after the EWSB and the mass

mixing between h and s, as described in Sec. 2.3 below.

Interactions between the singlet scalar S and the SM chiral fermions and the SM

gauge bosons occur only at the nonrenormalizable level due to the SM gauge symmetry,

SU(3)C ⇥ SU(2)L ⇥ U(1)Y . As an example, we list a few of them:

S Ga
µ⌫G

aµ⌫ , S2 Ga
µ⌫G

aµ⌫ , S DµH†DµH, S2 DµH†DµH,

S Q
3L

eHtR, , S2 Q
3L

eHtR,

etc.. We consider most general Lagrangian without any symmetry such as Z
2

symmetry

under S ! �S. It would be a separate question what kind of new underlying physics

would generate such dim-5 or dim-6 operators.

The singlet scalar field S(x) may develop a nonzero VEV independent of the EWSB:

S(x) = vS + s(x).

Expanding around vS , we define the physical singlet scalar s(x) in the interaction basis.

Then, the e↵ective Lagrangian for the singlet interaction eigenstate scalar boson s

could be written as

�L
s,int =

X

f

cf
mf

v
sf̄f �

⇢

2cW
s

v
+ c

0
W

⇣s

v

⌘

2

�

m2

WW+

µ W�µ �
⇢

cZ
s

v
+

1

2
c
0
Z

⇣s

v

⌘

2

�

m2

ZZµZµ

+
↵

8⇡
r�
sm

⇢

c�
s

v
+

1

2
c
0
�

⇣s

v

⌘

2

�

Fµ⌫F
µ⌫ +

↵s

16⇡
rg
sm

⇢

cg
s

v
+

1

2
c
0
g

⇣s

v

⌘

2

�

Ga
µ⌫G

aµ⌫ (2.10)

+
↵
2

⇡

⇢

2cdW
s

v
+ cdW 0

⇣s

v

⌘

2

�

W+

µ⌫W
�µ⌫ +

↵
2

⇡

⇢

2cdZ
s

v
+ cdZ0

⇣s

v

⌘

2

�

Zµ⌫Z
µ⌫

+
↵
2

⇡

⇢

2gcdW
s

v
+ gcdW 0

⇣s

v

⌘

2

�

W+

µ⌫Ŵ
�µ⌫ +

↵
2

⇡

⇢

2fcdZ
s

v
+ gcdZ0

⇣s

v

⌘

2

�

Zµ⌫
gZµ⌫

+
↵

⇡

⇢

2cZ�
s

v
+ cZ�0

⇣s

v

⌘

2

�

Fµ⌫Z
µ⌫ � LnonSM (2.11)

The newly introduced couplings ci’s multiplicatively parameterize the couplings of s with

respect to corresponding SM couplings. The singlet interaction eigenstate s(x) is defined

after the symmetry breaking due to possible nonzero VEV of a singlet scalar field S(x)

but before mixing with the SM Higgs field h. The last term LnonSM represents possible

interactions of the singlet scalar s with non-SM particles such as dark matter in some

– 7 –

SM Higgs
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Typical Sizes of b,c’s

Interactions between the singlet scalar S and the SM chiral fermions and the SM gauge
bosons occur only at the nonrenormalizable level due to the full SM gauge symmetry1,
SU(3)C ⇥ SU(2)L ⇥ U(1)Y . As an example, we list a few of them:

S Ga
µ⌫G

aµ⌫ , S2 Ga
µ⌫G

aµ⌫ , S DµH
†DµH, S2 DµH

†DµH,

S Q
3L

eHtR, , S2 Q
3L

eHtR,

etc.. We considered the most general Lagrangian without any symmetry such as Z
2

sym-
metry under S ! �S which is often invoked in the real singlet scalar DM models. It would
be a separate question what kind of new underlying physics would generate such dim-5 or
dim-6 operators, which we don’t address in this paper.

The singlet scalar field S(x) may develop a nonzero VEV independent of the EWSB:

S(x) = vS + s(x).

Expanding around vS , we define the physical singlet scalar s(x) in the interaction basis.
Then, the effective Lagrangian for the singlet interaction eigenstate scalar boson s could
be written as

� L
s,int =

X

f

cf
mf

v
s ¯ff �

⇢

2cW
s

v
+ c

0
W

⇣s

v

⌘

2

�

m2

WW+

µ W�µ �
⇢

cZ
s

v
+

1

2

c
0
Z

⇣s

v

⌘

2

�

m2

ZZµZ
µ

+

↵

8⇡
r�
sm

⇢

c�
s

v
+

1

2

c
0
�

⇣s

v

⌘

2

�

Fµ⌫F
µ⌫

+

↵s

16⇡
rg
sm

⇢

cg
s

v
+

1

2

c
0
g

⇣s

v

⌘

2

�

Ga
µ⌫G

aµ⌫ (2.10)

+

↵
2

⇡

⇢

2cdW
s

v
+ cdW 0

⇣s

v

⌘

2

�

W+

µ⌫W
�µ⌫

+

↵
2

⇡

⇢

2cdZ
s

v
+ cdZ0

⇣s

v

⌘

2

�

Zµ⌫Z
µ⌫

+

↵
2

⇡

⇢

2gcdW
s

v
+ gcdW 0

⇣s

v

⌘

2

�

W+

µ⌫Ŵ
�µ⌫

+

↵
2

⇡

⇢

2fcdZ
s

v
+ gcdZ0

⇣s

v

⌘

2

�

Zµ⌫
gZµ⌫

+

↵

⇡

⇢

2cZ�
s

v
+ cZ�0

⇣s

v

⌘

2

�

Fµ⌫Z
µ⌫ � LnonSM (2.11)

The newly introduced couplings ci’s parameterize the couplings of s to the SM particles in
a similar way to the SM Higgs (h) couplings to the SM particles. The singlet interaction
eigenstate s(x) is defined after the symmetry breaking due to possible nonzero VEV of a
singlet scalar field S(x) but before mixing with the SM Higgs field h. The last term LnonSM

represents possible interactions of the singlet scalar s with non-SM particles such as dark
matter in some dark matter models such as hidden sector dark matter models. We do not
specify this Lagrangian, but we will parameterize this effect by non-standard branching
ratio in later sections.

Since all the couplings c’s are from nonrenormalizable interactions between the singlet
scalar S and the SM fields (except for the Higgs fields), one can assume that c’s are all
suppressed by heavy mass scale and/or the loop suppression factors:

ci ⇠ “0” +

g2m2

(4⇡)2M2

, “0” +

g2m2

M2

,

1As discussed in Sec. 1, the singlet scalar could have renormalizable interactions Sf̄f with the SM
fermions if we imposed only the unbroken part of the SM gauge symmetry. However this can lead to
erroneous results as demonstrated in Refs. [52–54] in the context of Higgs portal DM models.
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b� = bWBW + btBt + �b� (2.6)

Note that bg,� (and their �b) are normalized to the corresponding SM couplings. bt and
bW parts describe effects from modification of top and W boson couplings to Higgs that
are involved in loop diagrams. The relative loop-functions of W boson and top quark for
mh = 125 GeV are given by

Ct = 1 (2.7)

BW =

A
1

(⌧W )

A
1

(⌧W ) + NcQ2

tA1/2(⌧t)
' 1.283, (2.8)

Bt =

NcQ
2

tA1/2(⌧t)

A
1

(⌧W ) + NcQ2

tA1/2(⌧t)
' �0.283. (2.9)

These parameters bi’s may have momentum(mass) dependence. We define these variables
at 125GeV relevant to the global fit to 125GeV resonance data.

In most part of this paper, we work on the 125GeV resonance, thus we can conveniently
assume that bi do not have mass dependence. However, for bg and b� which are loop-induced
couplings, we will discuss mass dependence in Sec. 6 when we study constraints on other
particles. We also assume that these parameters are real. This assumption would be good
as long as the loop diagram does not develop unitarity phase from the case where the loop
particles are on-shell. Considering various constraints on new charged or colored particles,
it would be reasonable to assume that there are no new charged or colored particles with
mass less than mH/2 ' 63GeV.

In the presence of new particles with nonzero EW gauge charges (e.g., another Higgs
doublet as in 2 Higgs doublet model, extra sequential fermions or mirror fermions), both
tree level processes h ! W+W�, Z0Z0 and the loop process h ! gg, �� can be modified,
resulting in bV 6= 1 and b� 6= 1 and bg 6= 1. Except for the 2HDM case, these new physics
effects will appear at one loop level, and we would expect that

bi ⇠ “1” +

g2m2

(4⇡)2M2

, or “1” +

g2m2

M2

where m is the external SM particle mass, M is the mass of new particles in the loop, and
g is the couplings between them.

2.2 Effective Lagrangian for a singlet scalar boson s

As in the case of the effective Lagrangian of the SM Higgs field H(x) up to dim-6, one
can construct effective Lagrangian involving a singlet S(x) and the SM fields up to dim-6,
imposing the SM gauge symmetry SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Note that there are only a
few operators describing interactions between S and the SM Higgs boson at renormalizable
level:

S H†H, S2 H†H,

in addition to the singlet self couplings: S3 and S4, which lead to the modified self couplings
of two Higgs-like scalar bosons H

1

and H
2

after the EWSB and the mass mixing between
h and s, as described in Sec. 2.3 below.
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All the c_i’s from nonrenormalizable operators

we obtain the following effective operators of interaction eigenstate h(x) field upto dim-6:

� L
h,int =

X

f

mf

(

bf
h

v
+

1

2

b
0
f

✓

h

v

◆

2

)

¯ff

�
(

2bW
h

v
+ b

0
W

✓

h

v

◆

2

)

m2

WW+

µ W�µ �
(

bZ
h

v
+

1

2

b
0
Z

✓

h

v

◆

2

)

m2

ZZµZ
µ

+

↵

8⇡
r�
sm

(

b�
h

v
+

1

2

b
0
�

✓

h

v

◆

2

)

Fµ⌫F
µ⌫

+

↵s

16⇡
rg
sm

(

bg
h

v
+

1

2

b
0
g

✓

h

v

◆

2

)

Ga
µ⌫G

aµ⌫

+

↵
2

⇡

(

2bdW
h

v
+ bdW 0

✓

h

v

◆

2

)

W+

µ⌫W
�µ⌫

+

↵
2

⇡

(

2bdZ
h

v
+ bdZ0

✓

h

v

◆

2

)

Zµ⌫Z
µ⌫

+

↵
2

⇡

(

2

gbdW
h

v
+

gbdW 0

✓

h

v

◆

2

)

W+

µ⌫Ŵ
�µ⌫

+

↵
2

⇡

(

2

fbdZ
h

v
+

gbdZ0

✓

h

v

◆

2

)

Zµ⌫
gZµ⌫

+

↵

⇡

(

2bZ�
h

v
+ bZ�0

✓

h

v

◆

2

)

Fµ⌫Z
µ⌫ (2.1)

where f in the first term of the Lagrangian denotes the SM fermions. The Higgs field h(x)

is defined after the EWSB: H(x) = v + h(x), and before any possible mixing with a singlet
scalar s which will be introduced shortly.

Most of dim-6 operators lead to the definite relation, bi = b
0
i, since they involve H†H

which yields (v + h)2. But this is not the case for bf and b
0
f . For example, the following

operators (qL ⌘ (tL, bL)), which are invariant under the full SM gauge group SU(3)C ⇥
SU(2)L ⇥ U(1)Y ,

qLDµbRD
µH, qLDµtRD

µ
eH,

contribute to the bf ⇠ m2

h/⇤
2, but not to b

0
f . Thus the relation bf = b

0
f is no longer true

for the Higgs couplings to the SM chiral fermions.
Modification to the SM Higgs Lagrangian is parameterized by multiplicative constants

bi and b
0
i, and the SM is recovered when all bi = b

0
i = 1. We are interested in

bf , bW , bZ , b� , bg (2.2)

among coefficients bi because these are most constrained by the current LHC data.
Loop-induced couplings of the SM higgs to photons and gluons involve loop functions

r
sm

defined in the SM as

r�
sm

= A
1

(⌧W ) + NcQ
2

tA1/2(⌧t) (2.3)
rg
sm

= A
1/2(⌧t) (2.4)

where we follow definitions of A
1

and A
1/2 as in Ref.[13], and ⌧i = m2

h/4m
2

i and v = 246

GeV. Loop effects of new physics is conveniently incorporated as additive shifts �b� and
�bg defined as

bg = btCt + �bg (2.5)
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couplings.

M(sF ) = ηFM(sF )SM (2.3)

Similarly to the Higgs field h(x), the singlet s(x) is defined after the symmetry breaking

due to nonzero VEV of a singlet scalar field S(x):

S(x) = vS + s(x).

Now let assume that there is a mass mixing between h and s after H and S develop

nonzero VEV’s. More explicitly, we use the following lagrangian for h and s:

−Lbilinear =
1

2
m2

hh
2 +

1

2
m2

ss
2 +mhshs (2.4)

−Lscalarint = h3 + h4 + sh2 + sh3

+ s2h+ s2h2 + s3 + s3h (2.5)

Let us define the physical Higgs bosons H1 and H2 as

H1 = h cosα− s sinα (2.6)

H2 = h sinα+ s cosα (2.7)

by diagonalizing the bilinear terms in the scalar potential. Then their couplings to the

state F will be

M(H1F ) = M(hF )SM × (bF cosα− cF sinα) ≡ κ1FM(hF )SM (2.8)

M(H2F ) = M(hF )SM × (−bF sinα+ cF cosα) ≡ κ2FM(hF )SM (2.9)

where κ1F or κ2F could be identified as κF in Ref. [? ].

From now on, one can adopt the procedures described in Ref. [].

For example, recently ATLAS Collaboration reported the constraints on κf and κV :

|κf | = |bf cosα− cf sinα| = 1.0± 0.2, (2.10)

|κV | = |bV cosα− cV sinα| = 1.2± 0.2, (2.11)

assumingH1 is the 126 GeV resonance observed at the LHC. IfH2 is the 126 GeV resonance,

we can make an appropriate substitution.

The signal strength will constrain

µ(i → H1 → f) =
r21ir

2
1f

r21

for the initial state i from i → H1 and the final state f from H1 → f . (Here f is not the

SM fermion, but denotes the final state.)

Finally let us assume that the signal strength κ’s are all consistent with the SM values

within 10 %, namely |κ| = 1.0 ± 0.1. In this case, the allowed regions in the (α, b) with

c = 0 and (α, c) and b = 0 are shown in FIg. 4. Even if c = 0, one can determined α only
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Mixing with a singlet scalar

3.4 Extra vectorlike fermions and a singlet scalar

In this case, there should be an extra

3.5 Extra charged vector bosons

4 Conclusions

In this paper, it was argued that there are a number of interesting BSM’s where (a) new

singlet scalar boson(s) appear with various couplings to the SM fields as well as to some

new fields such as new charged vector bosons or vectorlike fermions or hidden sector dark

matters, etc.. The singlet scalar boson(s) mix with the SM Higgs boson, and thus would

modify the Higgs properties in a different manner from the effective lagrangian for the SM

Higgs and the SM fields only. Since the mixing between the SM Higgs and a new singlet

scalar is described by dim-2 mass mixing operators, the mixing effects decouple slowly, and

thus can be more important than or as important as the higher dimensional operators for

.......

We then present a general way to parametrize new physics effects mainly coming from

the mixing between the SM Higgs and a new singlet scalar, assuming there is only one

extra singlet scalar.

4.1

Table 1. Nonvanishing cF ’s in various BSM’s with an extra singlet scalar boson. The vanishing
cF ’s are not listed in this Table. We consider models where bF = 1, namely the SM Higgs boson
couplings to the SM particles are not altered in this table.

Model Nonzero c’s

Pure Singlet Extension ch2

Hidden Sector DM cχ
Dilaton ch2 , cg, cW , cZ , cγ

Vectorlike Quarks cg, cγ
Vectorlike Leptons cγ

New Charged Vector bosons cγ
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Other c’s are all zeros !

which defines the physical mass eigenstates H
1

and H
2

as

H
1

= h cos ↵ � s sin ↵ (2.14)

H
2

= h sin ↵ + s cos ↵ (2.15)

where we conveniently denote 125GeV resonance by H
1

although it can be heavier or lighter

than H
2

. Their partial widths to the SM particles F ( 6= Hi=1,2) 1 are written as

�(H
1

! F )

�(h ! F )SM

�

�

�

�

mH1

= (bF cos ↵ � cF sin ↵)2 , (2.16)

�(H
2

! F )

�(h ! F )SM

�

�

�

�

mH2

= (cF cos ↵ + bF sin ↵)2 . (2.17)

Note that we normalize the decay widths of two physical scalar boson with respect to

corresponding SM width at the mass of the scalar boson. We treat bi and ci are mass-

independent; thus, their values fitted at 125GeV are also applied to other mass region.

We discuss how loop-induced couplings which are mass-dependent can be treated in Sec.6

when we study constraints on other particles.

Another possible e↵ect of mixing is that the heavier eigenstate can decay to the lighter

one if it is kinematically allowed. We will parameterize this e↵ect by introducing non-

standard branching ratio in Sec. 4.

2.4 Comparison with other approaches

Before proceeding further, let us compare our approach with others. Most papers use

the e↵ective Lagrangian (2.1) as the starting point. There is nothing wrong about this,

since it would be the most general e↵ective Lagrangian up to dim-6 when we impose the

local SU(3)C ⇥ U(1)
em

. However one has to be careful since the Higgs field would not

be the same as the SM Higgs field, the remnant of the SU(2)L doublet scalar fields after

EWSB. The Higgs field in (2.1) could be a mixture of the SM Higgs field and any number

of electrically neutral scalarl fields, some of them could be EW singlets and others could

carry nontrivial EW gauge charges. Therefore there is no way one can tell whether the

observed 125GeV boson is the SM Higgs boson or a mixture with a singlet scalar boson

within the usual approach.

In contrast, we separate h and s in the e↵ective Lagrangian from the beginning by

their EW gauge quantum numbers. Therefore one can interpret the global fit results

under various assumptions on the underlying new physics models and tell which models

are favored and which are not. At the moment, the data currently available is not enough

to constrain or exclude some BSM’s definitely. However in the future when more data

is available with better information on the production channels, our approach would be

useful for constraining various BSM’s as well as verifying the SM Higgs scenario.

1Note that in our definition F denotes the SM fields only, so that interaction eigenstate s does not have

couplings to F except for the case F = h.

– 9 –



• 125GeV Higgs (mass-eigenstate) is 
 
 
 
h: SU(2) doublet interaction eigenstate  
s: SU(2) singlet interaction eigenstate  
alpha: mixing angle (alpha=0 means SM-like)	


• h and s effective couplings are parameterized by 
{b_i}, {c_i}.  Some terms are shown below.  

H = h cos↵� s sin↵

NB: b_i=1, c_i=0 mean SM-like



• Models are ubiquitous, and 
singlet scalar is versatile:	


• If Hidden fermion is DM,  
s is needed for correct  
thermal relic density.  
 
 

• If an extra vector exists, s should break gauge symmetry. 
Gauge symmetry may needed for various reasons: just 
another force, or ensuring DM stability, etc...	


• Condensation can provide new mass scale.



• Singlet-Higgs mixing is just gauge invariant, renormalizable.  
 

• S and Mixing eventually modify Higgs properties! 	


• Many interesting examples are built to enhance Higgs-to-
diphoton rate.



• After all, signal is modified by three sources.	


• This structure can’t be revealed by just measuring 
single mu_gamma and fit any Higgs parameter to it.	


• Our lagrangian actually has mixing angle, y, x as free 
parameters to fit. Although not perfect and too 
early to say conclusively, we will see what we can 
do.

Mixing

Direct coupling 
to Higgs

inherit from 
singlet coupling



• Production times BR is measured: signal strength. So 
hard to extract info on individual couplings.	


!

!

• Unknown width leaves overall normalization 
undetermined. 	


!

• If nonSM decay width exists, generally no unique solution of 
global fit is found. But statistically useful info can still be 
obtained, and built-in restrictions may further provide info.



• Higgs is produced via several channel. They are 
properly weighted-summed by couplings and density.

How to parameterize modifications to loop-induced gg 
fusion will be discussed later.



• How is decay width ratio, kappa, parameterized in 
terms of {alpha, b_i, c_i}?	


• Tree-level decay to WW, ZZ, ff:  

!

• Loop induced decay to gg, gamma gamma: 

!

!

!

• NB: b, Delta b, c are  
norm. to SM coupling.  

Scalar mixing modification of 
 W, top coupling

modification of 
 diphoton coupling

inherit from  
singlet



• Moriond 2013 data used.	


• Best fit values of each channel is used. The minimum 
of each channel occurs at slightly different mh.



• All signal strengths are universally modified if just scalar 
mixing(alpha) and/or non-SM width(kappa_H).  
 
 

• Data is parameterized by one while theory has two.	


!

• Overall, enhancement is slightly  
preferred although not  
significant



bi’s only

our fits fits in other refs.

(�bg, �b� ) (�0.0180+0.0559
�0.0577, 0.107

+0.0916
�0.100 ) (�0.12±0.11, 0.18±0.12

) [48]
(�0.083±0.067, 0.13±0.12

) [43]
Fig.5 of Ref.[46]

(ATLAS-only) (0.11+0.0867
�0.0830, 0.17

+0.117
�0.113) (0.08±0.14, 0.23+0.16

�0.13) [118]

( bV , bf ) ( 1.031+0.0682
�0.0688, 0.962

+0.124
�0.124 ) ( 1.03±0.06, 0.84±0.15

) [48]
Fig.3 of Ref.[43], Fig.4 of Ref.[46]

(ATLAS-only) (1.345+0.162
�0.144, 0.808

+0.144
�0.117) (1.13±0.08, 0.90±0.17

) [118]

Table 4. Comparison of our fit results with results available in other literature. Only results based
on up-to-date data after Moriond 2013 are compared. We sometimes re-interpret other’s results
in accordance with our notation. If only best-fit figure is available, we cite relevant figure and
reference. Cases that are not shown here do not have equivalent results in literature.

both CMS ATLAS

SM �2/⌫ = 12.01/10 = 1.20 2.33/5 = 0.466 9.69/5 = 1.94

(�b� ) (0.090) (-0.117) (0.28)
11.19/9=1.24 1.71/4=0.428 4.99/4=1.25

(�bg,�b� ) (-0.018, 0.107) (-0.078, -0.048) (0.11, 0.17)
11.13/8 = 1.39 0.859/3 = 0.286 4.14/3 = 1.38

( bV , bf ) ( 1.031, 0.962 ) ( 0.898, 1.021 ) ( 1.345, 0.808 )

11.74/8 = 1.47 0.808/3=0.27 4.52/3=1.51

( bV  1, bu, bd ) ( 1.0, 0.969, 0.938 )

11.86/7 = 1.69

(�bg, �b� , bV , bf ) ( 0.041, 0.117,

0.941, 0.961 )

11.07/6 = 1.85

Table 5. Best-fit results using bi only from both CMS and ATLAS data as well as individual.
Errors are shown in text.

�2/⌫ = 11.07/6 = 1.85. (4.37)

We do not consider fitting to individual ATLAS and CMS data here because there
are too small number of degrees of freedom (⌫ = 1) which may not allow meaningful
statistical interpretation of fit results.

We compare our fit results with other results available in literature. For proper compar-
ison, we use other results based on up-to-date data after Morion 2013. As tabulated in Table
4, we obtain fairly good agreement on central values and sizes of uncertainties. Some differ-
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General Cases
Models Best-fit results �2/⌫

SM 12.01/10 = 1.20

universal modification
(̂2univ) (1.012) 11.96/9 = 1.33

(BRnonSM )  18.8% at 95%CL
(cos↵) � 0.904 at 95%CL

VL lepton, W 0, S0

(c↵, c�) (0.98, -0.55) 11.1/8 = 1.39

VL quark
(c↵, cg, c�) (0.947, -0.128, -0.313) 11.1/7 = 1.58

(c↵, c� , BrnonSM ) BRnonSM  24% at 95%CL 11.1/8 = 1.39

(c↵, cg, c� , BrnonSM ) BRnonSM  39% at 95%CL 11.1/7 = 1.58

singlet mixed-in ̂

(̂2g, ̂
2

� , ̂
2

mix) (1.03, 1.15, 0.942) 11.1/7 = 1.58

singlet mixed-in theory
(ĉg, ĉ� , ĉ↵) (-0.176, -0.432, 0.971) 11.1/7 = 1.58

Table 7. Summary of best-fit results with scalar mixing. If BRnonSM is included in fit, no unique
solution is found, and its upper bound at 95%CL is presented. Only central values of best-fit are
shown, and errors can be found in text.

6.1 Universal modification and LEP bounds

Universal modification scenario in terms of two parameters

{↵, BRnonSM } (6.1)

is the simplest scenario that can be constrained from LEP searches of light Higgs boson.
BRnonSM can be relevant if ms  mh/2. Our discussion in this section, however, does not
depend on whether ms  mh/2 or not because only ̂univ combination (not individual ↵
or BRnonSM ) is constrained; see Sec.5.1 for discussion. LHC bounds will be discussed in
the next subsection using another scenario although similar bounds can be derived in this
case. As both production and decay relevant at LEP are proceeded by tree-level induced
coupling. Thus, we do not need to discuss the mass dependences of couplings here – we refer
to next subsection for this discussion. With these, the signal strengths of H

2

is universally
modified as that of H

1

.
LEP1 looked for Higgs via Bjorken process Z ! Z⇤h followed by Z ! `+`�, ⌫⌫̄, b¯b, ⌧⌧

and h ! b¯b, ⌧⌧ . LEP2 looked for Higgs via e+e� ! Zh [122]. Signal strengths in all cases
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Results
• Although it is premature to draw a 

definitive conclusion due to large 
uncertainties, the SM gives the best fit in 
terms of the chi^2/d.o.f.	


• Even if we include more parameters with 
new physics, it does not improve the overall 
fit very much	


• Mixing with an extra singlet scalar is slightly 
disfavored now, but the CMS data alone 
favors such a scenario



Important to seek for

• The 2nd singlet-like scalar boson (which 
might couple to the DM)	


• This scalar is very generic in any DM 
models with hidden sector (with local dark 
gauge symmetries) 	


• And can solve some puzzles in CDM 
models with DM self-interaction from light 
mediator (2nd scalar or dark gauge boson)


