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Direct searches for SUSY sparticles at the LHC as well as
measurements of the properties of the Higgs boson both
probe SUSY model parameter space

 What do (null?) SUSY searches tell us about the possible
variations in the Higgs couplings ?
* What do precision measurements of the Higgs couplings

tell us about the SUSY parameters & sparticle masses ?

— Here we will use the pMSSM in various forms to address
these questions quantitatively



Our p(henomenologicall MSSM

General CP-conserving MSSM with R-parity
MFYV at the TeV scale (CKM)
Lightest neutralino/gravitino is the LSP.

1st/2ndgeneration sfermions degenerate 50 GeV < |M, | <4TeV
Ignore 1st/2"d generation A-terms &Yukawa’s.
No assumptions wrt SUSY-breaking 100 GeV < [M,, u| <4 TeV
WMAP/Planck used as upper bound on 400 GeV =M, <4 TeV
thermal relic density 1<tan3 <60

> the pMSSM with 19/20 parameters | 100GeV<M, | e<4Tev

400 GeV<q,,u, d, <4 TeV

* Two large ~225k model sets with eithera | ;50 gev < d, Uy, d, <4 TeV
neutralino (19) or gravitino (20) LSP

A, S4Tev

« Smaller (~10k) dedicated set for low-FT leVsm,, <1TeV log prior)

studies & other analyses

There’s a LOT of space here ; we're going for breadth not depth !




ATLAS SUSY Analyses @ 7 & 8 TeV

* We replicated the ATLAS analysis suite employing fast MC (SOFTSUSY,
SDECAY, HDECAY, Madgraph & Pythia plus modified PGS) & validated
using ATLAS MSSM benchmark points

» We determine which models are excluded by each analysis & then combine
them to determine the total exclusion. (ATLAS has now taken over for us!)

Search Reference Neutralino | Gravitino | Low-FT Search Reference Neutralino | Gravitino | Low-FT

76 jets ATLAS-CONF-2012.033 | 21.2% 17.4% | 36.5% 76 jets ATLAS-CONF2012-100 | 26.7% 5% | 449%

multijets ATLAS-CONF-2012-037 1.6% 2.1% 10.6% multijets ATLAS-CONF-2012-103 3.3% 5.6% 20.9%

1 lepton ATLAS-CONF-2012.041 | 3.2% 53% | 18.7% 1 lepton ATLAS CONF-2012.104 | 3.3% 6.0% | 20.9%

HSCP 1205.0272 4.0% 17.4% | <0.1% SS dileptons ATLAS-CONF-2012-105 | 4.9% 125% | 35.5%
Disappearing Track ATLAS-CONF-2012-111 2.6% 1.2% <0.1% 2.6 jets ATLAS CONF-2013-047 28.0% 31.1% 56.5%

Muon + Dhsplaced Vertex | 1210.7451 - 0.5% - HSCP 1305, 0491 ~ 23.0% ~
Displaced Dilepton 12112472 08% - Medium Stop (2¢) ATLAS-CONF-2012-167 |  0.6% 8.1% 4.9%

Gluino — Stop/Sbottom | 1207.4686 )00 '1[-]91?;{: 3[-351{; %119:} Medium/Heavy Stop (1€) | ATLAS-CONF-2012-166 |  3.8% 15% | 21.0%

Loy Lieht Stop R wpee bt I IS I Direct Sbottom (2b) ATLAS CONF-2012-165 |  6.2% 51% | 12.1%

pedim Stop e Tty 03 Sk 2 || 3rd Generation Squarks (3b) | ATLAS.CONF2012.145 | 108% | 99% | 408%
eavy Stop ( .] i B UA:' :) f,{' 3rd Generation Squarks (3f) [ ATLAS-CONF-2012-151 1.9% 09.2% 26.5%%

Heavy Stop (1¢) 1208.2590 2.0% 29% | 12.6% e \TLAS CONF-2012.15 . P

. ) - o o o 3 leptons ATLS ) -2012-154 1.4% 8.8% 32.3%

GMSB Direct Stop 1204.6736 <01% | <01% | 0.7% . : ONT a0 . S g
o - e o . 1 leptons ATLAS-CONF-2012-153 | 3.0% 132% | 46.9%
irect Shottom ATLAS-CONF-2012-106 2.5% 2.3% 5.1% 7 MET ATLAS.CONF.2012.159 0.30 1 49 6.8

3 leptons ATLAS-CONF-2012-108 | 1.1% 6.1% | 17.6% L+ jets + ME ATLAS CONF2012 1 3% A% 8%
1-2 leptons 1208 4688 4.1% 8.2% | 21.0%

Direct slepton,/gaugino (2£) | 1208.2884 0.1% 1.2% 0.8% f th d I

Direct gaugino (3£) 1208.3144 0.4% 5.4% 7.5% —> |“any (0 e moaeis are now

4 leptons 1210.4457 0.7% 6.3% 14.8%

1 lepton + many jets ATLAS-CONF-2012-140 | 1.3% 2.0% 11.7% I d d b LHC h .

1 lepton + 7 ATLAS-CONF-2012.144 | <0.1% 16% | <0.1% exciuae y Searcnes.

v+ b 1211.1167 <0.1% 23% | <0.1% 0

vy + MET 1200.0753 <0.1% 54% | <0.1% (45 5 61 3 74 O) A) 4
B, - pp 1211.2674 0.8% 3.1% * " " -

AJH =77 CMS-PAS-HIG-12-050 1.6% <0.1% *
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Search Efficiency for Gravitino LSP Set
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Due to the large number of
long-lived NLSPs in this set
MET-based searches are less
effective.. but these are more
than compensated for by the
specialized searches 6
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ATLAS SUSY Analyses @ 14 TeV

Not many ATLAS searches are publically available for us to
replicate but just these few are very powerful :

Search Lumi Reference Neutralino | Gravitino | Low-FT
26jets | 300fh™1 | ATLASPHYSPUB-2013-002 90.74% 79.58% | 97.35%
Stop (0O1) | 300fb™1 | ATLAS-PHY S-PUB-2013-011 3.88% 5.03% 1.90%
Stop (11) | 300fb™1 | ATLAS-PHY SPUB-2013-011 16.98% 33.43% | 52.09%
2-6jets | 3000 fb™1 | ATLASPHYSPUB-2013-002 |  97.08% 90.57% | 99.96%
Stop (0) | 3000 fb™1 | ATLASPHY S-PUB-2013-011 18.81% 14.9% 39.27%
Stop (11) | 3000 fb™ 1 | ATLAS-PHY S-PUB-2013-011 43.45% 61.77% | 93.43%

- With 300 (3000) fb-1 that 90.8 (97.2)% of the neutralino models
are probed. For the low-FT set these rise to 97.4 (100) % !
Smaller numbers result in the gravitino case, 79.7(90.7)%,
since these are all MET-based searches.
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14 TeV Gravitino Set Results
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Being MET-based these 14 TeV searches are less powerful for the case
of gravitino LSPs . The addition of searches for long-lived states would

be very useful here.

10



14 TeV Results for the Low-FT Model Set
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None of these models remain to be shown after the HL-LHC !
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Precision Higgs Confronts the pMSSM

* Present measurements of the Higgs couplings do not stress
the pMSSM models here...this will no longer be true in the
future w/ LHC data @14 TeV & the ILC

 We employ the LHC, HL-LHC, ILC500 & ILC lumi upgrade
estimates of future constraints on the Higgs couplings as given

in the Snowmass Higgs Working Group report, i.e., Dawson
etal., 1310.8361

* We can then compare the constraints coming from bounds
on the signal strength parameters, . , as well as the ratios of
squared couplings, r; , to those from the SUSY searches for
each model set (HDECAY5.11)

12
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Example: these are the signal
strength distributions for the
di-photon final state produced
in gg fusion.

LHC searches reduce statistics
but do not change the shapes
in a significant way

10*

. Al n"mdels | I I LIOW_F-II-

B After current searches
mEm After 14 TeV 300 fb!

3|
10 Em After 14 TeV 3000 fb!

102 L

101 L

Number of models

100 L

-1 I
1050 0.2

.uggF(/TfY)



Number of models

Number of models

10°

— :
— 300fb! LHC14
|-~ 3ab LHC14
i -+ 1LC500

oo HL-ILC500

: mmm All models

|| After 14 TeV 300 fb!

| |mmm After current searches
1

. |mmm After 14 Tev 3000 b ||

— :
— 300fb! LHC14
|-~ 3ab LHC14
i -+ 1LC500

oo HL-ILC500

: mmm All models

|| After 14 TeV 300 fb!

| |mmm After current searches
1

. |mmm After 14 Tev 3000 b ||

115 120

1.25

While neutralino & gravitino cases
are very similar, the low-FT set is
different (ie, wider) as it contains light
stops & charginos that can contribute
significantly in loops

Note the peak is slightly (~2%) above
unity in all cases arising from the large
stop mixing necessary to get a ~126
GeV Higgs mass
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Note the peak here is somewhat
below 1 in all cases arising from the
large stop mixing necessary to get a
~126 GeV Higgs mass. Again the
low-FT set is somewhat different.

The suppression here is ~3x larger
than the correlated enhancement for

the yy final state.
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Large non-decoupling effects can appear
in the bottom coupling mostly from, e.g.,
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reduced
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Sizeable modifications in the bottom couplings are directly
correlated with large sbottom mixing & its sign. This effect
is much less in the low-FT set as there |u| must be small.

Neutralino LSP Gravitino LSP
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Since I'(h—bb) is the largest partial
width, a significant modification
there can have a sizeable impact
on the Higgs total width ... but we
are still safely under the new CMS
upper bound < 4.2.
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The invisible final state occurs through
decays to neutralinos that are either
stable (in neutralino LSP models) or
long-lived (in gravitino models).
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models with light LSPs to get the relic
density right, leading to significant BFs
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Will, e.g., measurements of r,, near ~1 impose any constraint on

the lightest sbottom mass ??

Not really...but large ratio values will require relatively light sbottoms
so that null searches might narrow the expected range forr,, . But
note (see below) values >2 are still possible after the HL-LHC.

Similar results are found to hold for the gravitino LSP set
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» Clearly measurements of the various Higgs couplings will put
significant constraints on the pMSSM.... But how much?

* No matter where the measured r; central values end up, if their
errors are small a large fraction of models will be excluded

« HOWEVER, the number of models & their identities WILL
depend on what these values are..

» To proceed further we have to make some assumption about
this. We will assume, for purposes of demonstration, that the
r. end up at their SM values in all future measurements

« Other (randomly chosen?) values are possible & interesting but
are more difficult to justify

What do we find comparing the direct SUSY searches with the
Higgs coupling measurements ?
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Out of the presently surviving models, what fractions will the Higgs

measurements be sensitive to assuming SM central values ?

Channel | 300 fb ! LHC 3ab I LIC 500 GeV 1ILC AL 500 GeV ILC
bb 16.6 (27.7, 0.5) | 33.4 (48.5, 5.5) | 754 (88.8,49.1) | OL.L (95.8, 77.3)
rr 0.7 (0.8, 29 3.1 (2.7, 5.7) 11.5 (9.9, 11.9) 36.0 (34.2, 32.9)
g .02 (0.04, 0.5) | 0.5 (0.6,3.1) | 99.4(99.7,99.7) | 100.0 (100.0, 100.0)
vy 0.02 (0.07,0) | 0.02 (0.09,0.2) | 0.02 (0.07, 0) 0.1 (0.2, 0.6)

Invisible 0 (0, 0) 0 (0, 0) 0.01 (0.01, 6.2) 0.02 (0.01, 7.5)
All [ 17.1 (28.2, 3.8) | 34.9 (40.6, 11.1) | 99.8 (99.06, 99.02) | 100.0 (100.0, 100.0)

Table 4: The fraction in percent of neutralino (gravitino, low-FT) models with the correct
Higgs mass remaining after the current 7 and 8 TeV LHC searches that are expected to be
excluded by future Higgs coupling measurements, assuming that the SM wvalues for these
couplings are obtained.

. and after the 300 fb-' SUSY searches ?

Channel || 300 fb~! LHC 3 ab~! LHC 500 GeV ILC HL 500 GeV ILC
bb 20.5 (31,7, 0) | 39.1 (53.0, 5.4) 82.6 (92.6, 46.4) 93.1 (97.5, 75.0)
TT 0.5 (0.7, 1.8) 3.3 (2.3, 1.8) 12.9 (9.9, 5.4) 38.9 (32.6, 23.2)
qq 0 (0, 0) 0.09 (0.1, 0) 09.9 (99.93, 100.0) | 100.0 (100.0, 100.0)
0% 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
[nvisible 0 (0, 0) 0 (0, 0) 0 (0, 10.7) 0 (0, 16.1)
All 20.8 (31.9, 1.8) | 40.6 (53.7, 5.4) | 99.91 (100.0, 100.0) | 100.0 {100.0, 100.0)
Table 5: Same as Table @ above but now for the subset of models expected to remain after

the ATLAS 14 TeV 01 jets + MET and 01 and 11 stop searches with 300 fb~! of data.
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Why are some couplings more restrictive than others ???

* hbb covers a very wide range so that any precision measurement
is likely to exclude many models & thus it is the strongest at the LHC
independently of its measured value. The high precision possible at
the ILC makes it quite powerful there as well

* hgg is particularly sensitive to the stop mixing required to get the
~126 GeV Higgs mass & is always below the SM value. Thus a
measurement yielding the SM value with small errors, as is possible
at the ILC, will kill almost everything! Of course if ry, was 0.97 with
the same error this measurement at the ILC would only exclude
2.7% of the neutralino models

* hztis also helpful but clearly plays a secondary role
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. and after the 3 ab-! SUSY searches ?

Channel || 300 b T LHC | 3ab ' LHC | 500 GeV ILC | HL 500 GeV ILC
b 19.6 (32.6, ) 38 1 (545, )| 82.9(049, ) | 934 (984, )
T 0.7 (0.7, —) 3(25 —) | 147107, —) | 416 (35.3, )
99 0(0,—) [l (0, —) | 100. [] (100.0, —) | 100.0 (100.0, —)
Y 0 (0, —) 0 (0, —) 0 (0, —) 0 (0, )

Invisible || 0 (0, —) 0 (0, —) 0 (0, ) 0 (0, )

Al [[20.9 (328, ) | 39.3 (55.4, )] 100.0 (100.0, —) | 100.0 (100.0, —)

Table 6: Same as Table |4 above but now for the subset of models expected to remain after
the ATLAS 01 jets + MET and 01 and 11 stop searches with 3 ab—! of data. The entries for
the low-FT set in this table are blank because no models survive the 3 ab~! LHC searches.

Here we see that the Higgs coupling measurements are very
powerful in terms of parameter space coverage & will even
exclude/discover some models to which the HL-LHC will not
have access
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Summary & Conclusions

« Higgs coupling measurements provide an ‘orthogonal’ set of
constraints on the SUSY parameter space in comparison to
direct searches.

« Direct (null) SUSY searches have qualitatively little influence
over the possible ranges of Higgs couplings

 However, constraints on Higgs couplings can exclude or
discover models that are not accessible to the HL-LHC

* The identity of the excluded models will depend on where the
measurements end up but are particularly powerful for the SM
case

* Hopefully a discovery will happen soon after LHC14 turn-on. !
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Low Fine-tuning in the pMSSM ?

« m, ~ 126 GeV in the MSSM requires large stop masses and/or
mixings which then — significant FT expected

my (m%, + £3) — (m3y, + L¥) tan? 8 § P
2 (tan® 8 — 1) |

* To quantify FT we ask how the value of M, depends upon any of
the 19 parameters, { p; }, up to (in some cases) the 2-loop, NLL
level (c/o Martin & Vaughn). We follow the traditional FT analysis
of Ellis et.al. & Barbieri & Giudice :

A =10InM2/0Inp;]|, A =max {A }

 How many models have A less than a specific value ?
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Multiple co-annihilators
Z

Slepton & gaugino co-annihilation
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Low-FT Model Gaugino Mass Spectra & Splittings
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Fraction of excluded models seen by 7&8 TeV direct shottom searches Fraction of excluded models seen by 7&8 TeV direct sbottom searches
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Fraction of excluded models seen by 7&8 TeV gluino mediated stop searches Fraction of excluded models seen by 7&8 TeV gluino mediated stop searches
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For Higgs coupling to tops, we don’t expect the 95% CL
constraints to get to the region of interest as shown here
at the LHC, HL-LHC or at ILC500 (but will at ILC1000)
since the shifts from unity are always found to be below

~10%

i L} I L 1 L L L} L] 1 |} I 1 ] L L
1500 —neutralino

1000 — gravitino

500 —

0.95 1.00 1.05 1.10
Tit
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Some Constraints

* Ap / W-mass » Direct Detection of Dark Matter (Sl & SD)

*b-sy  WMAP Dark Matter density upper bound

* A(g-2), - LEP and Tevatron Direct Higgs & SUSY searches
* I'(Z~ invisible) « LHC stable sparticle searches + A1t

» Meson-Antimeson Mixing

« BBN energy deposition for gravitinos
e Bo1v

* Relic v's & diffuse photon bounds
* Bsoup

M
" * No tachyons or color/charge breaking minima

« Stable vacua only
38
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