Rare Higgs Decays

Guillelmo Gómez-Ceballos

Massachusetts Institute of Technology

Hunting for a Non-Standard Higgs Sector 2014

- Introduction
- Less rare Higgs decays
- Invisible Higgs decays
- Higgs sector in MSSM
- Higgs sector in NMSSM
- ▶ WH, $H \rightarrow prompt \ electron jets$
- $H \rightarrow \pi_V \pi_V$, $H \rightarrow XX \rightarrow 4\ell$ (long-lived particles)
- Uncovered modes

Introduction

- Several ways to find Physics Beyond the Standard Model (BSM) within the Higgs sector:
 - measuring couplings of known SM Higgs boson decays:
 - main modes: ZZ, WW, $\gamma\gamma$, $\tau\tau$, $b\bar{b}$
 - (less) rare modes: $\mu\mu$, $Z\gamma$, $\gamma^*\gamma$, ee
 - very difficult modes (at LHC): ss, cc, gg
 - couplings: $gg \rightarrow H$, qqH, VH, $t\bar{t}H$, tqH, $b\bar{b}H$
 - searching for additional Higgs bosons:
 - direct searches for low mass (pseudo-)scalars (NMSSM...)
 - ▶ direct searches for heavy Higgs bosons (2HDM, H^{±±}...)
 - searching for particle decays involving Higgs bosons, e.g.:
 - $t \rightarrow cH$
 - $\blacktriangleright \quad \tilde{\chi}_1^0 \to \mathrm{H}\tilde{\mathcal{G}}, \ \tilde{t_2} \to \tilde{t_1}\mathrm{H} \to t\tilde{\chi}_1^0\mathrm{H}, \ \tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \to \mathrm{W}^{\pm}\tilde{\chi}_1^0\mathrm{H}\tilde{\chi}_1^0$
 - searching for rare neutral Higgs boson decays:
 - either forbidden or a branching fraction well below the experimental reach within the SM
- Last item is the main subject of the talk
- Focus on analyses with experimental (public) results, brief mention to other possible (new) searches

Values in % for $m_{ m H}=125~{ m GeV}$					
ЬЪ	$\tau^+\tau^-$	$\gamma\gamma$	W^+W^-	ZZ	
57.7	6.32	0.23	21.5	2.64	
gg	сī	<u>s</u> 5	$\mu^+\mu^-$	$\mathrm{Z}\gamma$	
8.57	2.91	0.025	0.022	0.154	

• "Invisible" decays in the SM: $BR(H \rightarrow ZZ \rightarrow 4\nu) = 0.1\%$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- $\blacktriangleright \ \Gamma(\gamma^*\gamma) \sim 0.06\Gamma(\gamma\gamma)$
- $BR(H \rightarrow J/\psi\gamma) \sim 10^{-6}$

${\rm H} \rightarrow {\rm Z}\gamma$ - ATLAS/CMS

- Two leptons and one photon in the final state
- Relatively simple analysis, but very low expected signal yields
- Split in several categories to improve S/B and mass resolution
- No significance excess over the entire search region
- Cross section limits about 10 times the SM expectation

${ m H} ightarrow \gamma^*(\mu^+\mu^-)\gamma$ - CMS

- Two collimated leptons and one photon in the final state
- $m_{\mu\mu} < 20 \text{ GeV}$
- Cross section limits about 8-10 times the SM expectation

・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・ つへで

${\rm H} \rightarrow \mu^+ \mu^-$ - ATLAS/CMS

- Two isolated muons in the final state
- Split in several categories to improve S/B and mass resolution
- Cross section limits about 5-8 times the SM expectation

Invisible Higgs Decays

- The most extensive set of rare decays searches by far
- ▶ It exists in the SM, but extremely rare: $BR(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.1\%$
- Observation of a large rate would be a sign of BSM:
 - LSPs in SUSY (neutralinos, gravitinos)
 - Graviscalars (large extra-dimensions)
 - ► Dark Matter (DM) → limits competitive with other DM searches
- Large missing transverse energy (E_T^{miss}) is the general pattern of all these searches
- Several production modes can be studied:
 - ► qqH (VBF): two forward/backward jets with high $\Delta \eta_{jj}$ & m_{jj}
 - ▶ $Z(\ell \ell)H$: two leptons compatible with a Z boson
 - $Z(b\bar{b})H$: two b-jets compatible with a Z boson
 - $Z/W(q\bar{q'})H$: two jets compatible with a Z/W boson
 - $gg \rightarrow H + jet$: one high p_T jet
 - standard mono-jet DM search can be re-used for this purpose, no public results yet
 - ► W(ℓν)H: one isolated high p_T lepton, hopeless due to the large W + jets background

Indirect Limits on Invisible Higgs Decays

- Using the information from the visible measured Higgs decays modes
- An alternative general scenario can be obtained by allowing for non-vanishing Higgs boson decays beyond the SM (BR_{BSM})
- $\kappa_{
 m V} \leq 1$ must be required

•
$$\kappa_{\mathrm{H}}^2 = \kappa_{\mathrm{H}}^2 (SM) / (1 - \mathrm{BR}_{\mathrm{BSM}})$$

VBF, $H \rightarrow invisible$ (I) - CMS

- Search for events with two high p_T jets with large $\Delta \eta_{jj}$ and m_{jj} , in addition to large E_T^{miss}
- ▶ All main backgrounds ($Z \rightarrow \nu \nu$, W + jets, QCD) estimated from data
- Simple cut & count massindependent approach

VBF, $H \rightarrow invisible$ (II) - CMS

Summary of the estimated number of background and signal events, together with the observed yield.

Signal yield is given for $m_{
m H}=125~{
m GeV}$ and

 $BR(H \rightarrow invisible) = 100\%$

	,
Process	Event yields
$Z(\nu\nu)$ +jets	$99 \pm 29(stat.) \pm 25(syst.)$
$W(\mu\nu)$ +jets	$67 \pm 5(stat.) \pm 16(syst.)$
$W(e\nu)$ +jets	$63 \pm 9(stat.) \pm 18(syst.)$
$W(\tau_{ m h}\nu)$ +jets	$53 \pm 18(stat.) \pm 18(syst.)$
QCD multijet	$31 \pm 2(stat.) \pm 23(syst.)$
Other backgrounds	$20.0 \pm 8.2(syst.)$
Total background	$332 \pm 36(stat.) \pm 46(syst.)$
VBF H(inv.)	$210 \pm 30(syst.)$
ggF H(inv.)	$14 \pm 11(syst.)$
Observed data	390
S/B (%)	70

- Mild excess over the expected background, not significant
- Observed (expected) 95% CL BR limit for m_H = 125 GeV is 65% (49%)

$\mathrm{Z}(\ell\ell)\mathrm{H},\,\mathrm{H}\rightarrow\mathrm{invisible}$ (I) - ATLAS/CMS

- Search for events with two high p_T isolated leptons compatible with a Z boson, in addition to large E_T^{miss}
- Statistical limited at this point, golden mode for high luminosity
- \blacktriangleright ZZ and WZ backgrounds from simulation, $t\bar{t}{+}WW$ and $Z{+}jets$ from data
- ► Tighter E^{miss}_T requirements in CMS to ~ completely reject Z + jets

$Z(\ell\ell)H$, $H \rightarrow invisible$ (II) - ATLAS/CMS

- ATLAS: observed (expected) 95% CL BR limit for m_H = 125 GeV is 75% (62%)
- CMS: observed (expected) 95% CL BR limit for m_H = 125 GeV is 83% (86%)

▶ ~30% excess at low $E_{\rm T}^{\rm miss}$ in ATLAS, not consistent with ${\rm H} \rightarrow {\rm invisible}$

$Z(\ell\ell)H$, $H \rightarrow invisible$ (III) - CDF

- Analysis performed with the full Tevatron run-II dataset
- Requirements looser than the ones at LHC
- Making use of ΔR_{ℓℓ} as final discriminant variable

$\mathrm{Z}(b\bar{b})\mathrm{H}, \mathrm{H} ightarrow \mathrm{invisible}$ - CMS

- Search for events with two high p_T b-jets compatible with a Z boson, in addition to large E_T^{miss}
- Split in Z p_T regions to improve signal-to-background ratio
- Built a BDT to separate signal and backgrounds as final discriminant variable
- Observed (expected) 95% CL BR limit for m_H = 125 GeV is 182% (199%)

Combined CMS $H \rightarrow invisible$ Result

- Paper just released! (arXiv:1404.1344)
- By assuming production cross sections as for the SM, the results of the three individual CMS searches are combined and interpreted as a limit on BR(H → invisible)
- ▶ Observed (expected) 95% CL BR limit for $m_{\rm H} = 125~{\rm GeV}$ is 58% (44%)

DM Limits Interpretation

- ► Limits on the DM-nucleon scattering cross section at 90% CL, extracted from the BR(H → invisible) limit in a Higgs-portal scenario, compared to results from direct-search experiments
- Sensitivity competitive with other dedicated searches

$Z/W(qar{q'}) + E_{ ext{T}}^{ ext{miss}}$ - ATLAS

- Search for events with two high p_T light-jets compatible with a Z/W boson, in addition to large E_T^{miss}
- Backgrounds from V + jets, top-quark production, and dibosons
- Using jet sub-structure techniques to identify V bosons
- Upper limits on DM and $H \rightarrow invisible$ scenarios

Mono-Jet Searches - ATLAS/CMS

- Search for events with one high p_T jet and large E_T^{miss}
- Backgrounds from V + jets, top-quark production, and dibosons
- ► Upper limits on DM scenarios, can also be interpreted on BR(H → invisible)

Higgs Sector in MSSM

- Higgs sector in SUSY contains two scalar doublets:
 - five physical Higgs bosons:
 - 3 neutral: CP-even Φ = h & H; CP-odd A
 - ▶ 2 charged: H[±]
 - SM-like Higgs boson: h
- Neutral Higgs "Φ" decay modes:
 - $BR(\Phi \rightarrow b\bar{b}) \sim 90\%$
 - $BR(\Phi \rightarrow \tau \tau) \sim 10\%$
 - $BR(\Phi \rightarrow \mu\mu) \sim 0.1\%$
- Two main production modes:
 - ▶ $gg \rightarrow H$
 - ► bbH

- B-tagged topologies make analyses rather different w.r.t. SM searches
- Observation of H(125) does not exclude a heavy MSSM Higgs boson in a wide range of tanβ, still fits both SM and MSSM
- Signal extraction based on looking for a mass resonance
- ▶ Showing $\Phi \rightarrow \mu\mu$ case here, other analyses in Susan Gascon-Shotkin's talk

・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・ つへで

MSSM $\Phi \rightarrow \mu \mu$ (I)

- Search for a $\mu\mu$ mass resonance
- Good mass resolution thanks to the full and clean reconstructed final state
- Split in b-tagged and non b-tagged categories to be sensitive to $gg \rightarrow \Phi$ and $b\bar{b}\Phi$ production modes
 - two (three) categories in ATLAS (CMS)
- Main backgrounds: $Z(b\bar{b})$, $t\bar{t}$, WW

MSSM $\Phi \rightarrow \mu \mu$ (II)

Higgs Sector in NMSSM

- Next to Minimal Supersymmetric Standard Model
 - NMSSM superfields = MSSM superfields + Higgs superfield singlet \widehat{S}
 - acommodates better $m_{
 m H} \sim 125~{
 m GeV}$
 - seven physical Higgs bosons:
 - ▶ 5 neutral: CP-even $\Phi = h_1$, h_2 , h_3 ; CP-odd a_1 , a_2
 - ▶ 2 charged: H[±]
 - one CP-odd boson (a_1) can be very light, $m_{a_1} < 2m_b$
- Two models interpretation:

${ m H} ightarrow$ 4 μ + X (Long-Lived)

•
$$\mathbf{H} \to f_{d_2} f_{d_2}, \ f_{d_2} \to f_{d_1} \gamma_d, \ \gamma_d \to \mu \mu$$

- $m_{\gamma_d} = 400$ MeV, long-lived
- $BR(\gamma_d \rightarrow \mu\mu) = 45\%$
- Back-to-back pairs of isolated, collinear, displaced μ
- Little E_{T}^{miss} since f_{d_1} are emitted back-to-back
- Limits on $BR(\mathrm{H}
 ightarrow 4\mu + X)$ vs. $(c au)_{\gamma_d}$

Other NMSSM analyses shown in Susan Gascon-Shotkin's talk

WH, $H \rightarrow prompt \ electron - jets$

- Search for events with one high-p_T isolated lepton and one or more prompt electron-jets
- Two models:
 - three-step and two-step
 - Each h_{d,2} particle can decay to a pair of dark photons γ_d or stable scalars n_d
- Select events with clusters of electron-like tracks within a jet, very distintive signature

$H \rightarrow \pi_V \pi_V$ (Long-Lived Particles)

- ► Search for events compatible with $H \rightarrow \pi_V \pi_V$
 - π_V is a long-lived neutral particle
 - π_V decays should happen at $r \sim 4 8 m$ (ATLAS muon spectrometer)
- Specialized tracking and vertexing reconstruction algorithms were used
- 0 observed data events to be compared with 0.03 ± 0.02 expected background events

$\mathrm{H} \rightarrow XX \rightarrow 4\ell$ (Long-Lived Particles)

- Search for a pair of oppositely charged isolated leptons originating at a separated secondary vertex
- Leptons with large impact parameter

Uncovered Modes (or Not Public Yet)

A summary can be found in e.g. arXiv1312.4992

▶
$$H \rightarrow XX \rightarrow 4b$$

$$\blacktriangleright \text{ H} \rightarrow aa \rightarrow 2b2\tau/2b2\mu/4\tau/2\tau 2\mu$$

multilepton analyses may be used to put limits on them

- ▶ $H \rightarrow XX \rightarrow 4j$
- ► $H \rightarrow XX \rightarrow 2j2\gamma$
- ▶ $H \rightarrow XX \rightarrow 4\gamma$

• no truly 4γ analysis exists yet

- ▶ $H \rightarrow aZ$
- $H \rightarrow Z_D Z / Z_D Z_D$, with Z_D a new gauge boson
- $H \rightarrow \chi_1 \chi_2 \rightarrow \gamma/2\gamma + E_T^{miss}$
- $\blacktriangleright \ \mathrm{H} \rightarrow \ell/\ell\ell/b\bar{b}/\tau\tau + \textit{E}_{\mathrm{T}}^{\mathrm{miss}}$
 - SUSY analyses may be used to put limits on them
- ▶ $H \rightarrow one/two \text{ prompt leptons} jets + X$
- Lepton Flavor Violating (LFV) Higgs decays: $\mu \tau$, $e \tau$, $e \mu$

Topologies

A Word about LFV Higgs Decays

- $\mu\tau$, $e\tau$ final states within current LHC reach
- Little sensitivity for $e\mu$ final state

Shown a summary of searches on rare Higgs decays:

- Invisible Higgs decays
- Higgs Sector in MSSM
- Higgs Sector in NMSSM
- WH, $H \rightarrow prompt \ electron jets$
- $H \rightarrow \pi_V \pi_V$, $H \rightarrow XX \rightarrow 4\ell$ (long-lived particles)
- No significant deviations from the SM so far
- Several analyses still in progress using run-I LHC data
- Large number of yet uncovered possible Higgs decays
 - some of them may re-use already existing analyses

Back-Up

References

- ATLAS-HIGG-2013-03, ATLAS-CONF-2013-073, CMS-PAS-HIG-13-013, CMS-PAS-HIG-13-018, CMS-PAS-HIG-13-028, CMS-PAS-HIG-13-030, CDF-11068: H → invisible
- EXO-12-048 & ATLAS-CONF-2012-147: mono-jet searches
- CMS-PAS-HIG-12-033: MSSM $\Phi \rightarrow b\bar{b}$
- CMS-PAS-HIG-13-021: MSSM $\Phi \rightarrow \tau \tau$
- ▶ arXiv:1211.6956 & CMS-PAS-HIG-12-011: MSSM $\Phi \rightarrow \mu\mu$

・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・ つへで

- ▶ CMS-PAS-HIG-13-010: NMSSM $H \rightarrow 4\mu + X$ short-lived
- ▶ ArXiv:1210.0435: NMSSM $H \rightarrow 4\mu + X$ long-lived
- ATLAS-CONF-2012-079: NMSSM $H \rightarrow 4\gamma$
- ▶ ArXiv:1302.4403: WH, $H \rightarrow prompt \ electron jets$
- ArXiv:1203.1303: $H \rightarrow \pi_V \pi_V$
- ▶ CMS-PAS-EXO-11-101: $H \rightarrow XX \rightarrow 4\ell$
- Uncovered modes: arXiv1312.4992
- LFV: arXiv1209.1397

- All the difference in sensitivity comes from *E*_T^{miss} requirement
- CMS wants to ensure tiny Z + jets background is left after the full selection, i.e. tighter E_T^{miss} requirement is applied
- Notice all the ATLAS excess of events come from that difficult bin to model
- Long term sensitivity is barely affected since events with large E_T^{miss} are the relevant ones

Variable	ATLAS	CMS
$p_T^j > [GeV]$	25	30
Jet bin categories	0	0,1
$\rho_{\rm T}^{\ell} > [\text{GeV}]$	20	20
third lepton veto	applied	applied
$ m_{\ell\ell} - m_{\rm Z} < [{ m GeV}]$	15	15
b-tag veto	not applied	applied
$ E_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell} <$	0.2	0.25
$\Delta \phi_{\ell\ell - E_{\mathrm{T}}^{\mathrm{miss}}} > 1$	2.6	2.7
$E_{T}^{miss} > [GeV]$	90	120
$\Delta \phi_{\ell\ell} < 1$	1.7	not applied
Final discriminant	$E_{\mathrm{T}}^{\mathrm{miss}}$	m_{T} - $\Delta \phi_{\ell\ell}$

(ロ) (回) (E) (E) (E) (O)

$\mathsf{MSSM}\ \Phi \to b\bar{b}$

- Highest branching ratio, but very difficult due to the large QCD background:
 - dedicated trigger paths to identify b-tagged jets
 - challenging background estimates
- - all hadronic: at least three b-tagged leading jets
 - semileptonic: two b-tagged leading jets plus a soft muon
- Signal extraction from a peak in the M₁₂ di-jet mass

MSSM $\Phi \rightarrow \tau \tau$ (I)

- Search for a ττ mass peak using a maximum likelihood method (~10-15% mass resolution)
- Five ττ final states are reconstructed: μτ_h, eτ_h, eμ, μμ, τ_hτ_h
- Split in b-tagged and non b-tagged categories
 - sensitive to $gg \rightarrow \Phi$ and $b\bar{b}\Phi$ production modes
- ► Main backgrounds: $Z \rightarrow \tau \tau$, QCD/W + jets, $Z \rightarrow ee/\mu\mu$, tt̄, dibosons

$\mathsf{MSSM} \ \Phi \to \tau \tau \ (\mathsf{II})$

- No significant excess of events over the SM background prediction is observed in any of the categories
- ▶ 95% CL upper limits are extracted

2

$H \rightarrow 4\mu + X$ (Short-Lived)

NMSSM $H \rightarrow 2a \rightarrow 4\gamma$

- Sensitive to very light a:
 - ▶ for $m_a < 3m_{\pi^0}$, $a \rightarrow \gamma \gamma$ enhanced, very clean signal
 - one CP-odd boson (a_1) can be very light, $m_{a_1} < 2m_b$
- Large boost for a, γ very collinear \rightarrow seen almost as ${
 m H} \rightarrow \gamma \gamma$
- Similar analysis as $H \rightarrow \gamma \gamma$:
 - \blacktriangleright relaxed shower shape requirements on γ
 - allow larger lateral energy leak
- Limits for several m_a values

