

Bundesministerium für Bildung und Forschung

Direct searches for heavy Higgs bosons

Adrian Perieanu

I. Physikalisches Institut B, RWTH Aachen

8th April 2014

CMS Integrated Luminosity, pp

- Outline: • Motivation • CMS & ATLAS detector • Heavy Higgs: 2HDM Higgs++ • Other searches at high mass
 - Perspectives

what is driving us - always problems -

hierarchy problem:

- electro-weak scale is at 10² GeV
- Plank-scale is at 10¹⁹ GeV
- $M_W / M_P \simeq 10^{-17} \text{ GeV}$

purely experimentalist point of view 0 . fine tuning problem: • Higgs mass: $M_{meas.} = M_0 + \delta M$ M_0 : bare mass δM : quantum mass correction (loops) • $\delta M^2 \approx - 2\Lambda^2_{\mu\nu}/16 \pi^2$ not a problem if Λ_{UV} would not be M_P (10¹⁹ GeV) => we need a correction with a precision of 10^{-17}

because of my experimental nature let me see what I cannot see...

Adrian Perieanu

ATLAS Detector

44m

physics objects: electrons

Electrons in ATLAS:

- energy clusters formed within a dedicated $\Delta\eta x \Delta \varphi$ area and matched to a track ($e - \gamma$ separation)

- track checked for a match to a secondary vertex
- $(e converted \gamma separation)$

- use Gauss Sum Function alg. to account for bremsstrahlung

EM calorimeter:

- Liquid Argon
- high granularity
- longitudinal segmentation

• energy resolution: $10\%/\sqrt{E/GeV} + 0.7\%$

- coverage:
- |η| < 2.5 (track)

Adrian Perieanu

April'14, Benasque

Adrian Perieanu

physics objects: muons

• coverage: $|\eta| < 2.4$, $\eta = -\ln [\theta/2]$ • transverse momentum resolution: $\sigma_{p_{T}}/p_{T} \approx 0.015\% p_{T} \oplus 0.5\%$ good agreement between
Monte Carlo simulation and data
there is a reason why we are
called CMS ^(C)

physics objects: e, τ , jets and E_{τ}^{miss}

Higgs: what do (we think) we know

2HDM

TYPE I: one Higgs doublet provides masses to all quarks (up- and down-type quarks (~SM)
TYPE II: one Higgs doublet provides masses for up-type quarks and one for down-type quarks (~MSSM)
TYPE III & IV: different doublets provide masses for down type quarks and charged lepton

non-CP violating 2HDM Higgs sector has 6 free parameters:

more in arXiv: 1106.0034

$M_{H^\pm}, M_{H^0}, M_{h^0}, m_{A^0}, tan\beta, \alpha$ - Higgs mixing angle

σ*BR (H→hh) contours for TYPE I (left) and TYPE II (right) 2HDM
α and tanβ: Heavy Higgs's couplings to SM fermions and massive gauge bosons

OLIDM I

T	2111D101 1	211010111
hVV	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
hQu	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
hQd	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
hLe	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
HVV	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
HQu	$\sin \alpha / \sin \beta$	$\sin lpha / \sin eta$
HQd	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$
HLe	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$
AVV	0	0
AQu	$\cot eta$	\coteta
AQd	$-\cot\beta$	aneta
ALe	$-\cot eta$	aneta

more in arXiv:1207.4835

OUDM II

2HDM: H(hh) & A(Zh)

muons & electrons

isolated

- taus
- dR > 0.1 relative to μ and e
- $p_T > 20$ GeV and $|\eta| < 2.3$ photons
- isolated
- $p_T > 20$ GeV and $|\eta| < 2.5$ jets
- PF, dR > 0.4 to μ , τ , γ and e
- $p_{T} > 20$ GeV and $|\eta| < 2.5$

event selection

- m_{II} > 12 GeV
- bin in number of τ_h
- number of OSSF pairs
- photons (2)
- 1 or 2 leptons
- 1 or 2 hadronic taus
- search in bins of PF MET

and number of jets

Adrian Perieanu

	h(126) decays							
		WW*	ZZ*	ττ	bb	rr		
	WW*	1	1	1	Х	1		
cays	ZZ*	-	1	1	~	~		
36) de	ττ	-	-	1	Х	~		
h(12	ЪЪ	-	-	-	Х	Х		

h(126) decays WW⁴ 7.7* ττ γγ 11 1 1 1 1 Х 1 Х Х qq Z⁰ decays Х Х Х νν 1

April'14, Benasque

between tt and signal events

CMS Preliminary

3r×σ [pb]

340

m₄ [GeV]

360

HIG-13-025

 $\sqrt{s} = 8$ TeV. L = 19.5 fb⁻¹

gg→ A→Zh

····· expected

95% C.L. CLs Limits — Observed

expected $\pm 1\sigma$

2HDM searches with

 $H \rightarrow WW \rightarrow ev \mu v$

ATLAS-CONF-2014-010

2HDM results combined

"allowed" (eye) combined regions from ATLAS and CMS

minimal type II seesaw model:

• an additional scalar field, triplet under

- $SU(2)_L : \Phi^{++}, \Phi^+ \text{ and } \Phi^0$
- with $U(1)_{Y}$ hypercharge Y = 2
- test neutrino mass generation
- production processes:

 $\Phi^{++}\Phi^{--}$ pair & $\Phi^{++}\Phi^{-}$ associated production

CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L}dt = 4.9$ fb⁻¹

selection

- Σp_T leptons as function of m_{Φ}
- Z⁰ veto
- missing energy in transverse plane
- $\Delta \phi$ for $\ell^{\pm} \ell^{\pm}$
- data driven methods to estimate bkg.:

side bands, ABCD (4τ and 3τ final states)

CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L} dt = 4.9$ fb⁻¹

 BP1: a massless neutrino, normal mass hierarchies

• BP2: a massless neutrino, inverted mass hierarchies

• BP3: degenerate neutrino mass spectrum (0.2 eV)

• BP4: Φ⁺⁺ with equal BR to each lepton generation.

Branching fractions of Φ^{++} for the 4 benchmark points

Benchmark point	ee	еµ	eτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

observed limits:

Benchmark point	Combined 95% CL limit [GeV]	95% CL limit		
		for pair production only [GeV]		
$\mathcal{B}(\Phi^{++} \rightarrow e^+e^+) = 100\%$	444	382		
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \mu^+) = 100\%$	453	391		
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \tau^+) = 100\%$	373	293		
$\mathcal{B}(\Phi^{++} \rightarrow \mu^+ \mu^+) = 100\%$	459	395		
$\mathcal{B}(\Phi^{++} \rightarrow \mu^+ \tau^+) = 100\%$	375	300		
$\mathcal{B}(\Phi^{++} \rightarrow \tau^+ \tau^+) = 100\%$	204	169		
BP1	383	333		
BP2	408	359		
BP3	403	355		
BP4	400	353		

 $\mathcal{B}(\Phi^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$ CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L}dt = 4.9$ fb⁻¹

more details in Eur. Phys. J. C 72 (2012) 2189

- final states: e[±]e[±], e[±]μ[±], μ[±]μ[±]
- only H^{±±} prompt decays: $c\tau < 10 \mu m$
- event selection:
- single lepton triggers with
- p_{τ} > 18 (20 & 22) GeV for μ (e)
- leading p_{τ} lepton with $p_{\tau} > 25$ GeV, while next-to-leading lepton with $p_{T} > 20 \text{ GeV}$ - m_{μ} > 15 GeV and for $e^{\pm}e^{\pm}$ 70 < m_{μ} < 110 GeV
- excluded due to charge misidentification

April'14, Benasque

0

100

200

300

 $m(e^{\pm}\mu^{\pm})$ [GeV]

600

500

400

 $\sigma(pp \rightarrow H^{\star \star} \text{ H}^{-}) \times BR(H^{\pm \pm} \rightarrow \mu^{\pm}\mu^{\pm}) \text{ [fb]}$

10

10

double charged Higgs

- couples to either left- or right-handed fermions
- in left-right asymmetric models the two cases are distinguished: $H_1^{\pm\pm}$ and $H_8^{\pm\pm}$

• $\sigma(H_{L}^{++}H_{L}^{--})/\sigma(H_{R}^{++}H_{R}^{--}) \approx 2.5$ (due to different couplings to Z boson)

Observed 95% CL upper limit

SM & EWK singlet scalar

(at high mass with H+ZZ+2l2v)

 $C^2 + C^{\prime 2} = 1$ unitarity condition

 $\mu' = C'^2 \cdot (1 - BR_{\text{new}})$

$$\Gamma' = \Gamma_{\rm SM} \cdot \frac{C'^2}{1 - BR_{\rm new}}$$

- electroweak singlet scalar mixing with the h⁰ (125 GeV)
- C (C') couplings scale factors of the low (high) mass relative to SM
- \bullet EWK singlet cross-section modified by a factor μ'
- width Γ'
- BR_{new}: branching ratio of EWK singlet to non-SM-like decay modes

SM & EWK singlet scalar

other searches at high mass in SM: $H \rightarrow ZZ \rightarrow 4\ell$

- Z with mass between 40 and 120 GeV
- Z* with mass between 12 and 120 GeV
- both Z bosons decay into 2 leptons and the following
- combinations are used: ee ee, ee µµ, µµµµ
- no τ leptons due to worse mass resolution

high mass SM: $H \rightarrow ZZ \rightarrow 4\ell$

Observed

247

134

470

89

high mass SM: $H \rightarrow ZZ \rightarrow 4\ell$

- Z with mass between 50 and 106 GeV
- Z* with mass between **12** and **115** GeV for $m_{4l} < 140$ GeV goes linearly to **50** and **115** GeV up to $m_{4l} < 190$ GeV
- both Z bosons decay into 2 leptons and the following combinations are used: ee ee, ee $\mu\mu$, $\mu\mu\mu\mu$
- no τ leptons due to worse mass resolution

high mass SM: $H \rightarrow ZZ \rightarrow 4\ell$

 $p_{\mathrm{T}}^{\ell\ell}$

high mass SM: $H \rightarrow WW$

$$m_{\mathrm{T}}^2 = 2p_{\mathrm{T}}^{\ell\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi(\ell \ell, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}))$$

- dilepton transverse momentum

 $\Delta \phi(\ell \ell, \vec{E}_{\rm T}^{\rm miss})$ - azimuthal angle between dilepton momentum and MET

event selection:

- 2 isolated opposite charged high pT leptons (e, μ) and missing energy from the neutrinos
- gain sensitivity splitting statistics in events with 0-, 1and 2-jets categories
- cut'n count and shape analyses (2D)

• signal not any longer clean: background contributions from WW, W+jets, tt and Drell-Yan - use control regions

Adrian Perieanu

the errors

high mass SM: H→WW

multi-Higgs cascade in WWbb

event selection:

ATLAS

- one isolated high p_T lepton (e or μ) and missing energy from the neutrinos
- 4 (2 b-tagged) jets with $p_T > 25$ GeV and $|\eta| < 2.5$
- **BDT** used to discriminate between Higgs cascade and main background tt
- **background contributions from:** tt, W+jets, Z+jets, fake leptons, single t

Phys. Rev. D 89, 032002 (2014)

• limits are the weakest in low mass regions due to the poorer separation between tt and signal events

from last MSSM updates: ττ channel

is there still hope for MSSM?

• let's open the window(s) again

a new scenario (arXiv:13027033):

- m_h^{mod}
- A/H decays to charginos/neutralinos are open here (arXiv:0709.1029)

only green areas are allowed considering 125 GeV for h⁰

VBF H invisible decays

- events selection
- e and μ veto p_{T} > 10 GeV, $|\eta|$ < 2.1
- 2 jets, $p_T > 50$ GeV, $|\eta| < 4.7$ and $\eta 1 \cdot \eta 2 < 0$
- $|\Delta \eta_{ii}| > 4.2$ and $M_{ii} > 1100$ GeV
- E_T^{miss} > 130 GeV
- central jet vet: $p_T > 30$ GeV, $\eta_{jet1} < \eta < \eta_{jet2}$
- Δφjj < 1.0

• Dackground Estimation					
Background	N _{est}				
$Z \rightarrow \nu \nu$	102 ± 30 (stat.) ± 26 (syst.)				
$W \rightarrow \mu \nu$	$67.2 \pm 5.0 (\text{stat.}) \pm 15.1 (\text{syst.})$				
$W \rightarrow e \nu$	$68.2 \pm 9.2 ({ m stat.}) \pm 18.1 ({ m syst.})$				
$W \to \tau \nu$	$54\pm16(\mathrm{stat.})\pm18(\mathrm{syst.})$				
QCD multijet	36.8 ± 5.6 (stat.) ± 30.6 (syst.)				
Other SM	10.4 ± 3.1 (syst.)				
Total	$339 \pm 36 (\text{stat.}) \pm 50 (\text{syst.})$				
Observed	390				
 more details in HIG-13-013 					

April'14, Benasque

Z(II)H invisible decays

perspectives

Adrian Perieanu

new measurements: Higgs self-coupling

Linear Colliders

new measurements: VV scattering

summary

we have seen results from the searches for 2HDM, double charged Higgs and other high mass searches in SM and MSSM
what they have in common: so far we have only limits
limits have plenty of one and two sigma "blubs" – but they do not appear consistently at the same mass(es)
we need to show in our papers also the global p-values (not only the local ones)

we have two wonderful detectors and they still have a lot of potential to be exploited even after more than one year since LHC stopped delivering 8 TeV data
still to come: graviton search in the "dihiggs" channel, 2HDM inverted mass hierarchy and the list can go on

• we are now more rich in ideas and analyses ready to be run for the next LHC data than we were in 2010

backup

Higgs: what (else) do (we think) we know

LHC Higgs Cross Section WG YR3: Properties **arXiv:1307.1347**

searches: ZZ resonance

multi-Higgs cascade in WWbb

m_{H^0}	$m_{H^{\pm}}$	$\tan(\beta)$	$\sin(\beta - \alpha)$	m_A	\mathcal{M}^2_{12}	$\sigma(H^0)$	$BF(H^0 \rightarrow h^0 W^+ W^-)$ Excl/Pred
[GeV]	[GeV]			[GeV]	$[TeV^2]$	[pb]	
325	225	15	0.99	303	$6.9 \cdot 10^{-3}$	28	0.222 2.1
425	225	20	0.99	439	$8.9 \cdot 10^{-3}$	2	0.404 41
425	325	10	0.99	486	$1.8{\cdot}10^{-2}$	10	0.288 14
525	325	10	0.99	384	$2.7{\cdot}10^{-2}$	3	0.436 39
525	425	10	0.99	384	$2.7{\cdot}10^{-2}$	5	0.136 34
625	325	10	0.99	549	$3.9 \cdot 10^{-2}$	1	0.501 20
625	425	10	0.99	693	$3.9 \cdot 10^{-2}$	2	0.607 4.1
625	525	10	0.99	693	$3.9 \cdot 10^{-2}$	3	0.219 7.7
725	325	1	0.99	675	$5.9{\cdot}10^{-2}$	0.3	0.009 664
725	425	10	0.99	731	$5.2{\cdot}10^{-2}$	1	0.643 3.5
725	525	10	0.99	731	$5.2\cdot\!10^{-2}$	1	0.659 1.1
725	625	10	0.99	396	$5.2\cdot\!10^{-2}$	1	0.002 440
825	525	1	0.99	788	$1.3\cdot\!10^{-1}$	0.3	0.024 76
825	625	1	0.99	788	$1.3\cdot\!10^{-1}$	0.3	0.021 41
825	725	10	0.999	807	$6.8\cdot\!10^{-2}$	1	0.168 4.1
925	725	1	0.999	921	$2.4\cdot\!10^{-1}$	0.2	0.003 530
1025	825	1	0.999	920	$3.4\cdot\!10^{-1}$	0.1	0.003 243

- type-II 2HDM parameter space choices -

sample points in the space of the parameters which

• satisfy potential stability, unitarity and perturbativity constraints

• give the smallest ratio of excluded to predicted cross section

new measurements: VV scatering

many thanks Sara Bolognesi

ATLAS-CONF-2014-010

