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Mathematical Neural Networks
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Existence Theorem:
(Hornik, Stinchcombe, White 1989)

3-layer neural networks can 
approximate any continuous 
function on a compact domain.

Complex Systems Nonlinear Regression
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Based on data identify an input-output relation

Neural networks imply a Correspondence of
Equations, Architectures, Local Algorithms.

)( 12 xWfWy =

2W

1W

)tanh()( zzf =

xinput

tanh

∗=
∂
∂−=∆

2
2 W

E
W η

∗=
∂
∂−=∆

1
1 W

E
W η

youtput



Page 3 © Siemens AG, Corporate TechnologyCT  RTC  BAM

Finite unfolding in time transforms 
time into a spatial architecture. We 
assume, that xt=const in the future.

The analysis of open systems by 
RNNs allows a decomposition of 
its autonomous & external driven 
subsystems.

Long-term predictability depends 
on a strong autonomous subsystem.
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Modeling of Open Dynamical Systems with Recurrent Neura l Networks (RNN)
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An error correction system considers the 
forecast error in present time as a reaction on 
unknown external information. 

In order to correct the forecasting this error is 
used as an additional input, which substitutes 
the unknown external information. 
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Modeling Dynamical Systems with Error Correction Neural Netwo rks (ECNN)
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Combining Variance - Invariance Separation with ECNN

� The bottleneck autoassociator solves the 
variance - invariance decomposition.

� The Error Correction Neural Network
solves the transformed temporal problem.

� The sub-networks are implicitly coupled 
by shared weights.
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Modeling Closed Dynamical Systems with Recurrent Neura l Networks

… but to understand the dynamics of the observables, we have to reconstruct at least a part 
of the hidden states of the world. Forecasting is based on observables and hidden states.
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We can only observe a 
fragment  of the world …
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The Identification of Dynamical Systems in Closed F orm

Embed the original architecture into a larger architecture, which is easier to learn. After the
training, the extended architecture has to converge to the original model.
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The essential task is NOT to reproduce the past observations, but to identify related 
hidden variables, which make the dynamics of the observables reasonable.
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Decomposition of the Dynamics in Stable & Instable Parts of CRCNN

The tubes describe possible ensembles 
of instable trajectories.
If we have a causal instable (chaotic) 
sub dynamics, it is retro-causal stable 
and vice versa. Learning automatically 
should enforce a decomposition such 
that the causal and the retro-causal 
branch are both stable.causal instable, but retro-causal stable

causal stable, but retro-causal instable
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Approaches to Model Uncertainty in Forecasting

1 Measure uncertainty as volatility (variance) of the 
target series. The underlying forecast model is a 
constant. Thus sin(ωt) can be highly uncertain!??

2 Build a forecast model. The error is interpreted 
as uncertainty in form of additive noise. The width 
of the uncertainty channel is constant over time.

3 Describe uncertainty as a diffusion process 
(random walk). The diffusion channel widens over 
time, e.g. scaled by the one-step model error. 

For large systems 2 & 3 fail: We have to learn to 
zero error → the uncertainty channel disappears.

4 One large model doesn't allow to analyze forecast
uncertainty, but an ensemble forecast shows the 
characteristics of an uncertainty channel: Given a 
finite set of data, there exist many perfect models 
of the past data, showing different future scenarios 
caused by different estimations of the hidden states.
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On Model Building …

Start with a simple = universal framework

Add reasonable a priori structure

Add data

e.g. 
- neural networks
- others …

e.g. 
- monotonic input-output relations
- diversity / similarity analysis
- dynamical systems
- dynamics on manifolds
- linearity

e.g.
- temporal / cross sectional
- continuous / ordered / nominal

Interpret the a posteriori model causality on past data we can detect correlations 
only, their interpretation as causality is an 
intellectual insight, supported by prediction
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