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Existence Theorem:
(Hornik, Stinchcombe, White 1989)

3-layer neural networks can
approximate any continuous
function on a compact domain.
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Nonlinear Regression

Based on data identify an input-output relation
y =W, T (W)
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Neural networks imply a Correspondence of
Equations, Architectures, Local Algorithms.
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Modeling of Open Dynamical Systems with Recurrent Neura
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Finite unfolding in time transforms
time into a spatial architecture. We
assume, that x,=const in the future.

The analysis of open systems by
RNNs allows a decomposition of
its autonomous & external driven
subsystems.

Long-term predictability depends

on a strong autonomous subsystem.
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| Networks (RNN)
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output equation

identification

Preprocessing:
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SIEMENS
Modeling Dynamical Systems with Error Correction Neural Netwo rks (ECNN)

An error correction system considers the
forecast error in present time as a reaction on
unknown external information.

In order to correct the forecasting this error is
used as an additional input, which substitutes
the unknown external information.
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Combining Variance - Invariance Separation with ECNN

dynamics,
/eparatio\ » The bottleneck autoassociator solves the
o : variance - invariance decomposition.
Invariants varlantst
S = The Error Correction Neural Network
identity forecast
solves the transformed temporal problem.
invariants variants,, : .
ik » The sub-networks are implicitly coupled
wmb'“a“o/ by shared weights.
dynamics,,,
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Modeling Closed Dynamical Systems with Recurrent Neura | Networks

state transition

output equation

identification

... but to understand the dynamics of the observables, we have to reconstruct at least a part

of the hidden states of the world. Forecasting is based on observables and hidden states.
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The Identification of Dynamical Systems in Closed F  orm

Embed the original architecture into a larger architecture, which is easier to learn. After the
training, the extended architecture has to converge to the original model.
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The essential task is NOT to reproduce the past observations, but to identify related
hidden variables, which make the dynamics of the observables reasonable.
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SIEMENS
Decomposition of the Dynamics in Stable & Instable Parts of CRCNN

The tubes describe possible ensembles
of instable trajectories.

If we have a causal instable (chaotic)
sub dynamics, it is retro-causal stable
and vice versa. Learning automatically
should enforce a decomposition such
that the causal and the retro-causal
branch are both stable.
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causal stable, but retro-causal instable
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Approaches to Model Uncertainty in Forecasting

ot 1 Measure uncertainty as volatility (variance) of the
i Test target series. The underlying forecast model is a

Training

constant. Thus sin(wt) can be highly uncertain!??
2 Build a forecast model. The error is interpreted

0,05 1

0,00

P B | ‘ ‘ . : . : .
‘B Forecast %0 » 100 as uncertainty in form of additive noise. The width
B Target Series

Time of the uncertainty channel is constant over time.

3 Describe uncertainty as a diffusion process
(random walk). The diffusion channel widens over
time, e.g. scaled by the one-step model error.

For large systems 2 & = fail: We have to learn to

zero error — the uncertainty channel disappears.

4 One large model doesn't allow to analyze forecast
uncertainty, but an ensemble forecast shows the
characteristics of an uncertainty channel: Given a
finite set of data, there exist many perfect models

__________________ of the past data, showing different future scenarios

caused by different estimations of the hidden states.
© Siemens AG, Corporate Technology

o EEg Bagp Price o o 5 o
B0 O N @ R oW

Intelligent Systems & Control

Page 9



SIEMENS
On Model Building ...

Start with a simple = universal framework e.g.
- neural networks
- others ...
Add reasonable a priori structure e.g.

- monotonic input-output relations
- diversity / similarity analysis

- dynamical systems

- dynamics on manifolds

- linearity
Add data e.g.
- temporal / cross sectional
\ - continuous / ordered / nominal

Interpret the a posteriori model causality on past data we can detect correlations
only, their interpretation as causality is an
intellectual insight, supported by prediction
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