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Perturbative calculations and cuts

Signals & backgrounds start with generic (collinear) factorized cross sections

�AB!F+X =

Z
dxadxbfa/p(xa)fb/p(xb)�̂ab!F+X(xapA, xbpB,MF )

where �̂ab!F+X is LO, NLO, NNLO . . . and also (of course):

�pp!F+X =

Z
d2pF T

d�pp!F+X

d2pF T

The calculation of d�pp!F+X/d2pF T is qualitatively di↵erent than for �pp!F+X and gener-
ally requires a more elaborate factorization, for example (Laenen, GS, Vogelsang)

where Y th is nonleading by a power of 1!Q2/S . Even
though transverse momenta in ! are integrated, the phase
space for radiation is finite for fixed parton energy, and "
again denotes the renormalization scale. An explicit defini-
tion of !c/a as a matrix element will be given below. The
remainder, Y th , does not diverge as a power of 1!Q2/S at
threshold. The short-distance function hab

(kt)"1#O(#s) orga-
nizes infrared safe coefficients of $(1!z) in this case.
It is most natural to analyze the cross section near thresh-

old, Eq. %6&, in terms of a Laplace transform,
'd(exp)!N(1!()*, with ("Q2/S . For N large, we can
readily relate this Laplace transform to the Mellin moments
in Eq. %4&. This follows because generally,

e!N(1!+),+N, %7&

with corrections that are suppressed by a power of N, and
because in Eq. %6&,

1!%1!xa&!%1!xb&!ws,xaxb%1!ws&

#O%)1!Q2/S*2&. %8&

The Laplace moments of Eq. %6& are therefore equivalent to
its Mellin moments to leading power in N, and hence in 1
!Q2/S .
The close correspondence between the factorizations at

low QT and near threshold makes it rather natural to combine
the two. We therefore propose a convolution at fixed trans-
verse momentum and energy fraction:

d-ab�V

dQ2d2QT
"
1
S-ab�V

(0) %Q2&hab
(j)„#s%Q &…! dxad2ka Ra/a%xa ,ka ,Q &! dxbd2kb Rb/b%xb ,kb ,Q &

$! dwsd2ks Uab%ws ,Q ,ks&$„1!Q2/S!%1!xa&!%1!xb&!ws…$2%QT#ka#kb#ks&#Y j . %9&

The short-distance function hab
(j) (#s) is again an infrared-safe

series in the running coupling, which begins with unity at
zeroth order, and which absorbs, in this case, the coefficients
of $(1!z) $2(QT) at one loop and beyond. The remainder
Y j is free of power singularities at QT"0 at leading power in
1!Q2/S . As in threshold resummation, only flavor-diagonal
hard scatterings contribute at O)1/(1!Q2/S)* . It is impor-
tant to note that in terms that are not singular in QT , this
leading power emerges only after integration over QT . This
is because at fixed energy (1!z)Q , the phase space in QT

behaves as: '0
Q2(1!z)2dQT

2"(1!z)2Q2.
Equation %9&, and indeed each of the refactorizations dis-

cussed above, may be represented as in Fig. 1. In the termi-
nology of Ref. )4* and Appendix A below, Fig. 1 represents
the general ‘‘leading regions’’ in momentum space for this
cross section. The subdiagrams Ja ,b include lines collinear to
the incoming partons, H lines off-shell by order Q, and U
soft radiation.
The refactorizations of Eqs. %5& and %9& themselves define

the concept of recoil that we will use in this paper. The
short-distance function - (0) h (kt) is computed with on-shell
external momenta, collinear to the incoming lines. All unin-
tegrated transverse momentum dependence is contained in
the generalized parton densities P in %5& and R in Eq. %9&.
The dependence of highly off-shell lines on the transverse
momenta ka and kb of initial-state partons is to be absorbed
into higher orders of the short-distance function, by the usual
methods of collinear factorization. On the other hand, in both
transverse momentum and joint resummation, we retain the
kinematic linkage of the partonic transverse momentum with
the electroweak final state. This is what we shall mean by
including recoil effects.

C. Matrix elements

The refactorization theorems above, and the resumma-
tions derived from them, involve a number of new functions.
We now give explicit definitions for the various parton dis-
tributions, P, R and ! , when the incoming partons are
quarks, as well as for the eikonal functions U. Gluonic dis-
tributions can be defined similarly, following Ref. )29*.
The parton densities Ra/a and the eikonal functions U f f ,

defined at fixed energy and transverse momentum are, like
Eq. %9& itself, straightforward variations of functions identi-
fied for the QT and threshold resummed cases. The prototype
for these expressions is the partonic light-cone distribution,
written as )29*

. f / f%x ," ,/&"
1
4NC

! d0

21
e!i0xp#

$2 f %p &"q f%0u &3•uq f%0 &" f %p &4, %10&

where " is the scale at which the product of quark fields,
which are connected by a lightlike separation, 0u", u2"0, is
renormalized. An average over colors and spins is included
in the definition. In this expression, we have suppressed an
ordered exponential, 5u

(q)(0 ,0;0), which we shall also refer
to as a nonabelian phase line, of the gauge field along the
light cone vector between the quark fields, in the notation

56
( f )%02 ,01 ;X &"Pexp# !ig!

01

02
d76•A ( f )%76#X & $ .

%11&
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A guide to resummation:

Every convolution (x, pT or �Y . . .) leads to an evolution equation.

• For collinear factorization in x, one (DGLAP) evolution equation )
exponentiation of single logs (in Q2).

• For kT factorization, one (BFKL) evolution equation )
exponentiation of single logs (in s).

• For x and kT together, two evolution equations (Collins-Soper, Sen) )
exponentiation of double logs (in pT ).
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Even when �pp!F+X is given by fixed order, d�pp!F+X/d2pF T (for example) is not a
constant, and tends to pile up where there is more than one relevant scale
(Q � pT F � ⇤

QCD

)

11/14/14 11:18 PMfig_03a.png 1,134×1,088 pixels
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66 < Q < 116 GeV
CDF

66 < Q < 116 GeV

Figure 5: CDF data [41] on Z production compared to joint resummation predictions (matched
to the O(�s) result according to Eq. (45)) without nonperturbative smearing (dashed) and with
Gaussian smearing using the nonperturbative parameter g = 0.8 GeV2 (solid). The normaliza-
tions of the curves have been adjusted in order to give an optimal description; see text. The
dotted and dash-dotted lines show the fixed-order results at O(�s) and O(�2

s), respectively. The
lower plot makes the large QT region more visible.

26

The stability of the resumed di↵erential cross section at pT = 0 is an example of radiation-
induced stability. Recently dubbed “Sudakov safety” (Larkowski, Thaler, 1307.1699).
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But the situation may be more complex.

Break the calculation down: build up X = “anything” and the decay of F , the signal:

�pp!F+X =

Z
d3pF

1

2S

X

X0

Z
d(PS)X0 |AAB!FX0

(pF )|2
Z X

F 0
|AF!F 0

(pF )|2

�pp!F+X =

Z
d3pF

1

2S

X

X0

Z
d(PS)X0 |AAB!FX0

(pF )|2 [✓v(X
0
) + (1 � ✓v(X

0
))]

⇥
Z X

F 0
|AF!F 0

(pF )|2 [✓a(F
0
) + (1 � ✓a(F

0
))]

Can we calculate the e↵ects of “acceptance” cuts ✓a(F
0
) and the “veto” cuts ✓v(X

0
)?

A typical example is

keep

veto
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The WW test case

An excess compared to expectations, but problematic at NLO because of jet veto.
11
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FIG. 6: Distributions for WW candidates with all selection criteria applied and combining ee, µµ and eµ channels: (a) leading
lepton pT (b) opening angle between the two leptons (��(���)), (c) pT and (d) mT of the ��� + Emiss

T system. The points
represent data. The statistical and systematic uncertainties are shown as grey bands. The stacked histograms are from MC
predictions except the background contributions from the Drell-Yan, top-quark and W+jets processes, which are obtained from
data-driven methods. The prediction of the SM WW contribution is normalized to the inclusive theoretical cross section of
44.7 pb.

ee µµ eµ Combined
Data 174 330 821 1325
WW 100±2±9 186±2±15 538±3±45 824±4±69
Top 22±12±3 32±14±5 87±23±13 141±30±22
W+jets 21±1±11 7±1±3 70±2±31 98±2±43
Drell-Yan 12±3±3 34±6±10 5±2±1 51±7±12
Other dibosons 13±1±2 21±1±2 44±2±6 78±2±10
Total background 68±12±13 94±15±13 206±24±35 369±31±53
Total expected 169±12±16 280±16±20 744±24±57 1192±31±87

TABLE V: Summary of observed and expected numbers of signal and background events in three individual channels and
their combination (contributions from SM Higgs, VBF and DPS processes are not included). The prediction of the SM WW
contribution is normalized to the inclusive theoretical cross section of 44.7 pb. The first and second uncertainties represent the
statistical and systematic uncertainties, respectively.

Procedure of Meade, Ramani, Zeng 1407.4481

• Generate events

• Reweight according to pT -resummed cross section

• Impose jet vetos

• Plot and compare to un-reweighted and among di↵erent generators

Moves in the right direction
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. . . fills in a bit

MC + Parton Shower Corrections (%)
Powheg+Pythia8 7.0+6.4

�5.1

Powheg+Herwig++ 4.4+5.9
�4.7

aMC@NLO+Herwig++ 4.2+6.5
�5.2

Table 5: Percentage di�erences for �Fid of reweighted theory predictions compared to
MCs+Parton Showers at 14 TeV.

MC prediction Reweighted Scale Variation
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Figure 8: The top row shows the reweighting correction for left (Powheg+Pythia8), center
(aMC@NLO+Herwig++), right (Powheg+Herwig++) to the pT (ll +Emiss

T ) observable. The
bottom row has bin-by-bin percentage di�erence in events between reweighting and the MC
+ PS.

To demonstrate the e�ects at 8 TeV we show the distribution most a�ected, pT (ll+Emiss
T ),

in Figure 8 using the same cutflows and di�erent generators. This distribution is directly
correlated with the pT of the diboson system predicted by resummation, and shows the
variation compared to MC generators + parton showers. The largest discrepancy compared
to MC comes from the use of Powheg+Pythia8, while both Powheg and aMC@NLO are in
much better agreement when Herwig++ is used as the parton shower. However, this does
not mean the e�ects of the parton shower are the sole cause of the discrepancy. In the
fractional di�erence shown in Figure 8, we see the roughly the same shape dependence for
both Powheg curves, but the overall magnitude is reduced for Powheg+Herwig++ compared
to Powheg+Pythia8.

13

although the amount depends on the generator . . .

MC + Parton Shower Corrections (%)
Powheg+Pythia8 6.4+4.7

�2.8

Powheg+Herwig++ 3.8+4.5
�2.6

aMC@NLO+Herwig++ 3.3+5.0
�3.0

Table 3: Percentage di�erences for �Fid of reweighted theory predictions compared to
MCs+Parton Showers at 7 TeV.

MC + Parton Shower Corrections (%)
Powheg+Pythia8 6.5+5.0

�3.0

Powheg+Herwig++ 3.8+4.3
�2.5

aMC@NLO+Herwig++ 3.1+5.0
�3.0

MADGRAPH LO+Pythia6 �9.6+4.4
�2.7

Table 4: Percentage di�erences for �Fid of reweighted theory predictions compared to
MCs+Parton Showers at 8 TeV.

Figure 7: aMC@NLO+Herwig++ observables histogrammed for W+W� transverse mo-
mentum distribution for 7 TeV collisions and including the reweighting correction.

To demonstrate the e�ects on di�erential distributions, we use the ATLAS cutflows and
show the predictions of pT resummation for the 7 TeV ATLAS study [1] compared to the
original MC@NLO+Herwig++ results used by ATLAS. In Figure 7, we plot the four distri-
butions shown in [1]. As can be seen in Figure 7, pT reweighting can improve the di�erential
distributions somewhat, but is not capable of explaining the full discrepancy using a central
choice of scales.

12
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Resummation Formalisms

SCET has released the muse for factorizations that generalize pT -factorization. We can
apply these to WW with event cuts in “beam thrust”, (T ⇠ P

pTe
�|⌘|

), pT , etc..
• Factorization of jet veto cross section a la Tackmann, Walsh, Zuberi, 1206.4312
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where here and in the remainder of this section, kcut

stands for either T cut or pcut
T . The functions Mjet

i (kcut)
for i = a, b, s are defined by the full measurement applied
to na-collinear, nb-collinear, and soft particles, respec-
tively, which also defines the remainder �Mjet(kcut). For
this separation to be meaningful, the remainder should be
power-suppressed, which requires that the full measure-
ment Mjet does not mix constraints on collinear and soft
particles. This is a nontrivial condition, since the veto
on any individual jet is not allowed to mix constraints
between sectors. If a jet has a collinear component pc

and a soft component ps, then the veto condition, e.g.
for pcut

T , is

|�pTc + �pTs| < pcut
T . (30)

This prevents Mjet from factorizing into separate soft
and collinear components and gives a contribution to
�Mjet. Therefore, to preserve factorization this scenario
should only happen with a power-suppressed rate, such
that at leading power each jet contains either only soft or
only collinear final states. In that case, we can perform
the veto separately on jets in each sector, i.e., we can
write the product over all jets in Eq. (28) as products
over soft and collinear jets as in Eq. (29).

We shall show that for R � �, �Mjet indeed gives a
power-suppressed contribution to the rate. In this limit,
the following factorization formula holds for the Tj veto:

�(T cut) = �0Hgg(mH , µ)

Z
dY Bjet

g

�
mHT cut, xa, µ

�

� Bjet
g

�
mHT cut, xb, µ

�
Sjet

gg (T cut, µ) , (31)

where xa, xb and �0 are defined in Eqs. (25) and (26). In
the same limit, an analogous factorization formula holds
for the pTj veto:

�(pcut
T ) = �0Hgg(mH , µ)

Z
dY Bjet

g

�
mH , pcut

T , xa, µ, �
�

� Bjet
g

�
mH , pcut

T , xb, µ, �
�
Sjet

gg (pcut
T , µ, �) .

(32)

An equivalent form of this factorization formula was de-
rived in Ref. [15], and the NLL resummation for pcut

T was
performed in Refs. [14, 15].

In Ref. [14] jet-algorithm dependent e�ects were cal-
culated at fixed O(�2

s). These results were interpreted
in Ref. [15] in terms of a two-loop anomalous dimension
and used to extend the resummation based on Eq. (32)
to NNLL, working in the limit � � R � 1 to avoid ln R
clustering logarithms. However, we will show explicitly
in the following that for R � 1 Eqs. (31) and (32) do not
reproduce the all-order structure of QCD beyond NLL.
We will also see that for R � �, where the factorization
formula holds, only some parts of the O(�2

s) contribu-
tions from Ref. [14] are correctly interpreted in terms
of anomalous dimensions and used in conjunction with
Eq. (32).

Since Mjet in Eq. (29) is a simple product, and not a
convolution as for the inclusive variables in Eq. (19), the
factorized cross sections in Eqs. (31) and (32) now con-
tain a product of beam and soft functions rather than
a convolution. Also, each function explicitly depends on
the jet algorithm used, in addition to the jet-veto vari-
able itself, and includes R-dependent clustering e�ects.
Note that the O(�s) results do not yet depend on the
e�ects of the jet algorithm. Nevertheless, the resummed
cross sections are di�erent for the inclusive and exclu-
sive observables starting at NLL because of the di�erent
structures of their factorization theorems. This reflects
the fact that constraining the sum of emissions provides
a very di�erent phase-space constraint than constraining
each individual emission for more than one emission.

To understand the role of the jet algorithm in vetoing
on individual jets and how it impacts the logarithmic
series, it is useful to express the measurement function
in the form

Mjet = (Ma + �Mjet
a ) (Mb + �Mjet

b ) (Ms + �Mjet
s )

+ �Mjet , (33)

where �Mjet
i is defined to contain the jet-algorithm de-

pendence within each of the collinear and soft sectors,

Mjet
i (kcut) = Mi(k

cut) + �Mjet
i (kcut) , (34)

for i = a, b, s. The definition of �Mjet
i is subtle, since it

depends on what we define the corrections due to cluster-
ing relative to; namely it depends on the precise choice
of Mi, which is independent of R and the jet algorithm.
To study the e�ect of clustering we choose Mi to be the
inclusive TB or ET measurement,

Mi(k
cut) = �

� X

m�ith�sector

km < kcut

�
, (35)

where km is the TB or ET contribution from each particle.
At O(�s) there are no jet-algorithm e�ects, since there

is only a single, either soft or collinear, final-state par-

ticle. This means that �M(1) and �M(1)
i are zero, and

Mjet (1) reduces to a sum over terms with one nontrivial
constraint in each sector,

Mjet (1)(kcut) =
X

i=a,b,s

�(ki < kcut) . (36)

This gives the same O(�s) contribution as the integral
over the k = T or ET distribution with k < kcut.

Starting at O(�2
s) the role of the jet algorithm must be

understood. When R � �, soft-collinear mixing e�ects
are important. They give a correction to the cross section
of the form

��jet
SC � |CggH(µ)|2

�
�
papb

��OggH(µ)†� �Mjet OggH(µ)
��papb

�
, (37)

• Factorization of jet veto cross section a la Becher, Neubert, 1205.3806

The function Bµ�
c describes the structure of the jet of collinear particles inside one of the

colliding protons (the one moving along the light-like direction nµ), which is probed at small
transverse distances x�. In the context of SCET, such functions are referred to as beam
functions [34]. The corresponding function Bµ�

c̄ for the other beam jet is given by the same
formula with the replacements n̄ � n and c � c̄. The soft function S describes the physics
of soft gluons emitted from the colliding beam particles. Note that both the beam functions
and the soft function depend on the jet algorithm used for the jet veto. This is implicit in our
notation, which only makes the dependence on pveto

T explicit.
When inverting the first relation in (9), one must take into account that the beam function

Bµ�
c (z, x�, pveto

T , µ) has support for �1 � z � 1, and it can be shown that Bµ�
c (�z, x�, pveto

T , µ) =
�Bµ�

c (z, �x�, pveto
T , µ) (see e.g. [35]). Restricting the integration range to positive z values thus

leads to an extra factor of 2 for each beam function. After some straightforward algebra, we
obtain

d�(pveto
T ) = �0(µ) C2

t (m
2
t , µ)

��CS(�m2
H , µ)

��2 m2
H

�s
dy

d2q�

(2�)2

Z
d2x� e�iq�·x�

� 2Bµ�
c (�1, x�, pveto

T , µ) Bc̄ µ�(�2, x�, pveto
T , µ) S(x�, pveto

T , µ) ,

(10)

where �1,2 =
�

� e±y and � = (m2
H + |q2

�|)/s. The Born-level cross section is

�0(µ) =
m2

H �2
s(µ)

72�(N2
c � 1)sv2

. (11)

Up to corrections of order �2, one can replace � � m2
H/s in (10). Given that the peak of the

transverse-momentum distribution is around 10 GeV [36], this is a very good approximation.
Integrating over q�, we then obtain the simple result

d�(pveto
T )

dy
= �0(µ) C2

t (m
2
t , µ)

��CS(�m2
H , µ)

��2

� 2Bµ�
c (�1, 0, p

veto
T , µ) Bc̄ µ�(�2, 0, p

veto
T , µ) S(0, pveto

T , µ) .

(12)

Since the jet veto does not prefer any direction in the transverse plane, we can replace

Bµ�
c (z, 0, pveto

T , µ) =
gµ�

�
2

Bc(z, p
veto
T , µ) , (13)

where

Bc(z, p
veto
T , µ) = �z n̄ · p

2�

Z
dt e�iztn̄·p

X

Xc

�
�P (p)| Aµ,a

c� (tn̄) |Xc� �Xc| Aa
c�µ(0) |P (p)� . (14)

Note the similarity of this function with the usual definition of the gluon distribution function
in the proton, which in SCET notation reads [23]

�g/P (z, µ) = �z n̄ · p

2�

Z
dt e�iztn̄·p �P (p)| Aµ,a

c� (tn̄) Aa
c�µ(0) |P (p)� . (15)

Dropping the vanishing argument x� = 0 in the soft function, we finally obtain

d�(pveto
T )

dy
= �0(µ) C2

t (m
2
t , µ)

��CS(�m2
H , µ)

��2 Bc(�1, p
veto
T , µ) Bc̄(�2, p

veto
T , µ) S(pveto

T , µ) . (16)

7

• Adapted to W+W� by Okui and Jaiswal 1407.4537

of the helicity-dependent beam function (2.71), we use

B�/p(�, p
veto
T , µ, �) �

X

h=±1

B(h)
�/p(�, p

veto
T , µ, �)

=
1

2

X

p spins

1

2�

Z
dt e�it�(n·P )

X

X

��
p(P )

���†i
�(tn)

��X
� /n

2

�
X

����i(0)
��p(P )

�
.

(2.76)

Then, assuming B(�1)
f/p = B(+1)

f/p (which thus equals Bf/p/2), the cross section (2.73) becomes

d�

dM
=

2(2�)2

4�Ms

Z
d3�p3

(2�)3 2E3
d� �(M2 � 2q� ·p3�)

X

f

X

h=±1

C(h)
f (�1P1, �2P2, p3+4�, p3�4, µf)

���
p4=q�p3

� 1

Nc

1

2 · 2

�
Bf/p(�1, p

veto
T , µf, �) Bf̄/p(�2, p

veto
T , µf, �) + (f � f̄)

�
,

(2.77)

where f = u, d, s, c, b as before.

2.4 The Dependence on the Jet-Clustering Algorithm

Since our SCET calculation depends crucially on separating modes into collinear and anticollinear

modes, it is necessary that the definition of jets used in the actual experimental studies is consistent

with such separation of modes. We define a distance measure dij in the �-� space between particles

i and j as

dij � Min
�
(pTi )

2n, (pTj)
2n

�
�

(��ij)2 + (��ij)2

R
(2.78)

with parameters n and R. We also define a distance measure between particle i and the beam

diB � (pTi )
2n (2.79)

with the same n. The choices n = 1 and n = 0 respectively give the kT algorithm [78] and the

Cambridge/Aachen algorithm [79,80], while n = �1 corresponds to the anti-kT algorithm [81] used

by the relevant ATLAS and CMS studies of WW prediction mentioned in Section 1, with the jet-

radius parameter R taken to be 0.4 by ATLAS and 0.5 by CMS. Starting from the list of all dij ’s

and diB’s, we search for the smallest distance and if it is dij , we replace the particles i and j with

a single, new particle (with a 4-momentum pi + pj), while if it is diB, we declare the particle i a jet

and remove it from the list. We recalculate the distances in the new list and repeat the procedure,

until no particle is left in the list.

Since our factorization formula (2.73) is based on the separation of collinear and anticollinear

modes in SCET, we must make sure that the jet algorithm does not cluster particles of di�erent

modes into a single jet. This is indeed the case as long as | log �| � R, because the rapidity di�erence

between a collinear particle and an anticollinear particle is parametrically � log(1/�) � log � �
| log �|. Another potential issue is that, since the jet algorithm introduces a new parameter R to

the theory, the jet-algorithm dependence of the clustering of two or more real gluon emissions can

give rise to log R. Since we are not resumming log R, we must take R � O(1) such that | log R| � 1.

Resummation of log R remains an open problem [42, 46], but for a color-singlet final state with a

jet veto (such as our WW case), it has been shown [46] that the numerical impact of the log2R

terms is small for R � 0.5. We therefore assume that this conclusion holds to all orders in log R,

and take | log R| � 1 and | log �| � R parametrically.
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Suggests beyond-NLO corrections that help agreement, which has been confirmed by explicit
NNLO in this case (Gehrmann et al., 1408.5243)

�
s = 7 TeV

R = 0.4 R = 0.5

pveto
T = 25 GeV pveto

T = 30 GeV

ATLAS

�veto
WW [pb]

37.9+3.8%+5.0%+3.8%
�3.8%�5.0%�3.8% �

CMS

�veto
WW [pb]

� 41.5+3.8%+7.2%+2.3%
�3.8%�7.2%�2.3%

Theory

�veto
WW [pb]

37.6+4.2%
�3.4% 39.1+2.8%

�2.5%

Theory

�veto
h�WW [pb]

2.1+13.5%
�11.4% 2.3+11.5%

�10.6%
30

35

40

45

�
ve

to
W

W
[p

b]

p
s = 7 TeV

pveto
T = 25 GeV

R = 0.4
pveto

T = 30 GeV
R = 0.5

Theory
(WW only) ATLAS CMS

�
s = 8 TeV

R = 0.4 R = 0.5

pveto
T = 25 GeV pveto

T = 30 GeV

ATLAS

�veto
WW [pb]

48.1+1.7%+6.2%+3.1%
�1.7%�5.2%�2.9% �

CMS

�veto
WW [pb]

� 54.2+4.0%+6.5%+4.4%
�4.0%�6.5%�4.4%

Theory

�veto
WW [pb]

44.9+3.8%
�3.1% 46.8+2.5%

�2.3%

Theory

�veto
h�WW [pb]

2.6+13.3%
�11.7% 2.9+11.5%

�11.5% 35

40

45

50

55

60

�
ve

to
W

W
[p

b]

p
s = 8 TeV

pveto
T = 25 GeV

R = 0.4
pveto

T = 30 GeV
R = 0.5

Theory
(WW only) ATLAS CMS

Table 2: Comparison of our theory predictions for jet-veto cross-section with those measured by the

ATLAS and CMS experiments at
�

s = 7- and 8-TeV LHC runs. The Higgs jet-veto cross-sections

are taken from [43]. As in the rest of the paper, the scale uncertainties in the theory predictions

here correspond to the standard convention of varying µh and µf by a factor of 2 above and below

M and pveto
T , respectively. It should be noted that they may be somewhat smaller than the theory

uncertainties estimated from comparing the NLL to NNLL calculations in Fig. 5a and Fig. 5b.
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�
s

TeV �LO �NLO �NNLO �gg�H�WW �

7 29.52+1.6%
�2.5% 45.16+3.7%

�2.9% 49.04+2.1%
�1.8% 3.25+7.1%

�7.8%

8 35.50+2.4%
�3.5% 54.77+3.7%

�2.9% 59.84+2.2%
�1.9% 4.14+7.2%

�7.8%

13 67.16+5.5%
�6.7% 106.0+4.1%

�3.2% 118.7+2.5%
�2.2% 9.44+7.4%

�7.9%

14 73.74+5.9%
�7.2% 116.7+4.1%

�3.3% 131.3+2.6%
�2.2% 10.64+7.5%

�8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W +W � production in the 4FNS and reference
results for gg � H � WW � from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order e�ects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W� cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
e�ects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W� production are combined with the
gg � H � WW � cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg � W+W� channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W� cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W� cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W� cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W� production in the 5FNS
requires maximal suppression of the top resonances in

�/�NLO

141387
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FIG. 1. The on-shell W +W � cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg � H � WW � is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp � W+W�b and pp � W+W�bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g � bb̄ splittings requires a suf-
ficient level of inclusiveness. The di�culty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pveto

T,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pveto

T,bjet � �, the higher-order correc-
tions in the 5FNS su�er from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W� cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pveto

T,bjet � 0,
the (N)NLO cross section does not approach a constant,
but, starting from pveto

T,bjet � 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g � bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W� production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-
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What to do with many jets?

The information hidden in t¯t events is just astounding . . .

previous kinematic definitions of cross-section measurements involving top quarks [19]. In
addition, the objects used to define the fiducial volume at particle level were reconstructed
such that they closely match the reconstructed objects in data.

Ev
en
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ad
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g 
je

t p
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500

600
ATLASSimulation

 = 7 TeVs

ALPGEN+HERWIG

Figure 1. The relationship between the pT of the tt̄ system in the single-lepton channel and the
pT of the highest pT jet in tt̄ events generated with ALPGEN+HERWIG. The pT of the tt̄ system
is taken at parton level and the leading jet is constructed at particle level.

2 The ATLAS detector

The ATLAS detector [20] covers nearly the entire solid angle around the LHC-beam collision
point. Due to the complexity of the final state in the selected events, the present analysis
relies on all main ATLAS detector subsystems.

The ATLAS reference system is a Cartesian right-handed coordinate system, where
the nominal collision point is at the origin. The anti-clockwise beam direction defines the
positive z-axis, while the positive x-axis is defined as pointing from the collision point to
the centre of the LHC ring and the positive y-axis points upwards. The azimuthal angle �

is measured around the beam axis, and the polar angle � is measured with respect to the
z-axis. The pseudorapidity is defined as � = � ln tan(�/2).

The ATLAS detector consists of an inner tracking detector (ID), comprising a silicon
pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker (TRT).
The ID is surrounded by a superconducting solenoid that provides a 2 T magnetic field. The
ID is used for reconstruction of tracks and primary vertices and plays a crucial role in b-quark
jet identification. It is surrounded by high-granularity liquid-argon (LAr) electromagnetic
(EM) sampling calorimeters with lead absorbers. An iron absorber and scintillating tile
calorimeter provides hadronic energy measurements in the central pseudorapidity range of
|�| < 1.7. The end-cap and forward regions are instrumented with LAr calorimeters for
both electromagnetic and hadronic energy measurements up to |�| = 4.9. The calorimeter
system is surrounded by a muon spectrometer (MS) that incorporates a system of air-

– 3 –
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Distributions . . . in ⌘, in pT , in HT gap fractions . . . are only part of it

7

GRAPH. Data is well described by the simulation in both cases.
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Figure 3: Distribution of the pseudorapidity (left) and the transverse momentum (right) of
the first (top row) and second (bottom row) leading additional reconstructed jets compared to
signal and background simulated samples. The tt sample is simulated using MADGRAPH. ”tt
signal” refers to the events decaying dileptonically, ”tt other” refers to the rest of the decay
modes, including tt decays into prompt �-leptons.

The measured kinematic variables of the additional jets coming from signal events, where the
background contribution estimated with simulation is substracted, are compared with the dif-
ferent theory predictions in Figs. 4 and 5. Furthermore, the angular distance between the first
and second additional jet, defined as �R =

�
��2 + ��2, is shown in Figure 6. All theory

predictions are normalised to the luminosity in data using the measured cross section, in or-
der to compare both shape and normalisation. In general, the theory predictions describe the
data well for the leading additional jet and �R, except MADGRAPH with decreased match-
ing threshold. Variations of the jet-parton matching scale show no significant effect in the
acceptance/efficiency, while variations on the Q2 scale result in larger changes in the yields.

14 6 Additional Jet Gap Fraction
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Figure 10: Measured gap fraction as a function of HT in different � regions. Results in data are
compared to the nominal MADGRAPH signal sample, POWHEG and MC@NLO (top) and to the
samples with varied Q2 scale and matching threshold (bottom). For each bin the threshold is
defined at the value where the data point is. The errors on the data points indicate the statistical
uncertainty. The shaded band corresponds to the statistical uncertainty and the total systematic
uncertainty added in quadrature.

Unfold these data, look at pT and HT distributions as a function of rapidity . . .
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Radiation into a gap is calculable as a function of energy – with important uncertainties (see
below) –

Q0 ¼ 3 GeV and V 0ð1:5 TeV; sp ¼ 1Þ in Fig. 6(b), we
obtain gap fractions of 12% and 54% for color-singlet
and -octet resonances, respectively. The figures also show
that the ratios are larger for larger M and Y.

We can interpret these results as follows. As we saw in
Eq. (41) of Sec. III, the eigenvectors, e1 and e2, of the soft
anomalous dimension matrix for q !q ! Q !Q are very close
to a color singlet and a color octet for the kinematics and
the gap geometry we study in this section. For this reason,
we have called them ‘‘quasisinglet’’ and ‘‘quasioctet’’
eigenvectors, respectively. Consequently, this leads the
hard functions in Eqs. (49) and (50) to retain approxi-
mately their color basis dependence even after transform-
ing the functions to the diagonal basis.

Following the above property of the hard functions and
the eigenvalues, shown in Fig. 4(a) for q !q ! Q !Q, the
quasioctet component of the hard function for a color-octet
resonance is the leading component, with a corresponding

small exponent, EðfÞ
22 . We thus find that the quasioctet cross

section ðHðf;LOÞ
G Þ22Sðf;0Þ22 ½lnðQ0="Þ

lnðpT="Þ%E
ðfÞ
22 is dominant in the par-

tonic gap cross section (53) for an octet resonance G. The

quasioctet cross section is enhanced due to its large overlap

with the color-octet basis which gives a small exponent
E22 < 1. It is clear that this term produces the ‘‘convex’’
shapes of the dashed gap fraction curves (fgap) of the log

plot on the x axis, as shown in Fig. 6, and the upper

surfaces in Figs. 8 and 9 for top pair production. These
curves rise rapidly at low Q0.
The singlet resonance process, on the other hand, has a

larger overlap with the quasisinglet component of the hard

function. The eigenvalue of the quasisinglet is larger than

1, and EðfÞ
11 ¼ ð4=!0ÞRe"ðf;1Þ

1 > 1. Thus, the quasisinglet

cross section, ðHðf;LOÞ
Z0 Þ11Sðf;0Þ11 ½lnðQ0="Þ

lnðpT="Þ%E
ðfÞ
11 , is suppressed at

low Q0, explaining the ‘‘concave’’ shapes of the solid lines
in Fig. 6 and the lower surfaces in Figs. 8 and 9 for top pair

production. These increase slowly at low Q0. The differ-
ential partonic cross sections with respect to Qc are pre-
sented in Fig. 10 for octet and singlet resonance processes

for values M ¼ 1:5 TeV, ## ¼ 2:5, and Y ¼ 1:5. The
behavior of the exponents corresponds to the dominance

of the octet resonance process at low Qc in Fig. 10.

FIG. 8 (color online). Gap fractions as functions of energy threshold Q0 and gap range Y from a resonance of M ¼ 1:5 TeV, (a) for
## ¼ 3:5 and (b) for ## ¼ 2:5. The lower surfaces in (a) and (b) describe the gap fractions through a Z0 resonance (color-singlet), the
upper surfaces throughout a G resonance (color-octet) decaying into a top quark pair. The ratios of the gap fraction for an octet
resonance to the gap fraction for a singlet resonance are illustrated in (c) and (d) as functions of Q0 and Y.
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094020-13

Gaps for heavy pairs of di↵erent color (Sung, 0908.3688)

So there is a program to check the QCD nature of radiation. Part of it is the “approximate
scale invariance of QCD” but it’s more than that . . .
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Look in for radiation patterns and gap fractions from recoilless sources – consistent with
radiation from LO top pair color flow? When is the color-coherent description of top pair
plus leading jet a source necessary to describe lower-energy jets/net energy flow?

G

G

t

tbar
G

G

t

tbar

GOR

Soft functions: recoiless sources 

Each has a prediction for “gap” distributions in HT or total energy. But do they really
factorize from the “beam function/PDFs”?

Novel jet substructure measures can be resummed starting with such sources (Larkowski,
Thaler 1307.1699).
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A pQCD frontier

But: We need to improve the theory to get a better understanding of radiation with detected
jets/colored particles in the final state. J. Forshaw at PSR 2014 Workshop:
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Interpretation:

The basis of collinear (and kT ) factorization is the cancellation of “final state” interactions
on space and time scales large compared to the final state interaction. Color “entangle-
ments” are eliminated in this way, and Ward identities work.

“final state” = not causally connected to the localized hard scattering.

On the other hand . . .
Once the sum over final states becomes (su�ciently) exclusive, color exchange (entangle-
ment?) at short times but over finite distances (size of the colliding systems) can survive.

This color coherence and incoherence may best be studied in a coordinate space picture of
the scattering. (Erdogan, GS, to appear)
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What to do when PDF uncertainties are “large”

Suppose we have “perfect” data and �̂ for some final state, so good that PDF uncertainties
dominate.
Parameterization from Jun-Nadolsky “Meta-analysis” 1401.0013

flavors; x < 0.8 for the gluon and u, d, c, b quarks; x < 0.4 for ū, d̄ quarks; and x < 0.3 for s, s̄ quarks. By construction,
the uncertainty bands of the input PDFs and their meta-parametrizations agree well in the fitted x regions. Outside
these ranges, the meta-parametrizations are determined by extrapolation and span a wide uncertainty band, which
is close, although not identical, to the original PDF uncertainty (which has a large uncertainty of its own at such x).
The PDFs in the outside (unfitted) regions are hardly constrained at the moment and have negligible contributions
to most LHC observables even at 14 TeV.

The specific e�ective form that we choose at the scale Q0 for each flavor is

f(x, Q0; {a}) = ea1xa2(1 � x)a3e
�

i�4 ai

�
Ti�3(y(x))�1

�
. (9)

It satisfies the above asymptotic behaviors, � xa2 at x � 0 and � (1 � x)a3 at x � 1, while the detailed shape is
regulated by the Chebyshev polynomials, Tj(y(x)) with j � 1, bound to lie between -1 to 1 for �1 � y � 1. The
positivity condition is automatically satisfied for 0 � x � 1, in accord with the input PDFs, which are positive for all
groups at the x and Q0 values we chose. The function y(x) maps the 0 � x � 1 interval onto the �1 � y � 1 interval.
The form of y(x) is selected so as to avoid large cancellations between the coe�cients of Chebyshev polynomials in
the y � ±1 limits, hence to reduce the number of Ti(y(x)) needed for approximating �(x, Q0).

We select y = cos(�x�) with � = 1/4 as a mapping function that generally requires fewer Chebyshev polynomials
than the other tried form y = 1 � 2x� with � = 1/2 suggested by [34]. The choice of y(x) is illustrated in Fig. 1,
where the logarithmic derivatives d(ln f)/dai are compared for y = 1 � 2x1/2 in the left subfigure and y = cos(�x1/4)
in the right subfigure. From Eq. (9) we have

d ln(f)

dai
=

�
1, ln x, ln(1 � x), Ti�3 (y(x)) � 1

�
, (10)

thus ln f is linear in the ai parameters. The coe�cients d ln f/dai =
�
T1 (y(x)) � 1, T2 (y(x)) � 1, ...

�
for i � 4 are

shown by blue solid lines. With the choice y = cos(�x1/4) in the right inset, the oscillations of the polynomials are
stretched across a wider span of x, resulting in a better approximation of the PDF shapes.

We evaluate �(xk, Q0) and f(xk, Q0; {a}) on a lattice of momentum fractions {xk} for each flavor and fit f to �
by minimizing a metric function

E [�, f(a)] =
X

flavors,x grid

�
ln �(xk, Q0) � ln f(xk, Q0; {a})

�(ln �(xk, Q0))

�2

, (11)

where �(ln �(xk, Q0)) � �(�(xk, Q0))/�(xk, Q0), and �(�(xk, Q0)) is the symmetric PDF uncertainty of �(xk, Q0).
For each of the 9 flavors, f(x, Q0; a) depends on at least three important parameters, a1,2,3. The number of additional
Chebyshev polynomials varies depending on the complexity of the PDF shape and is especially large for the NNPDF
parametrizations that oscillate. By trial and error, we found that all current NNLO PDFs can be approximated
by including up to order-5 polynomials Tj for the gluon, u and d quarks; and up to order-4 polynomials for other
flavors. This will be our default choice, rendering a total of 66 PDF parameters. The di�erences between the input
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Figure 2: Partial integrals over the fitted x ranges for the momentum sum rule, u-valence sum rule, and d-valence sum rule
at Q0 = 8 GeV. In each inset, the points from left to right are found from CT10 (up triangles), MSTW2008 (down triangles),
NNPDF2.3 (squares), HERAPDF1.5 (diamonds), and ABM11 (circle) PDF sets.

6

How do we minimize theoretical uncertainty given imperfect PDFs?

Consider collinear-factorized prediction for a range of rapidity Y , and then a subrange �Y ,

�H(Y ) = �H(�Y ) + �(Y � �Y )

Parameter a
1

is an overall normalization, which cancels in ratios. But can the data help at
all?

Yes, re-analyze to rederive uncertainty in ai, i 6= 1.

R (�Y, {ai, i 6= 1}) =

�(Y � �Y )

�(Y )

Unless the uncertainty is all in a
1

, this should improve theoretical uncertainty.
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Some thoughts

• If we are to find “stealth” or other hidden signals, it will require progress in the QCD
background.

• The key may be in learning how color incoherence of incoming hadronic fragments (the
set of “beam functions”) emerges as we go from exclusive to inclusive final states. My
own hopes are on a coordinate-space description (Erdogan + GS, to appear).

• The history of QCD jets and hadronization is there for the reading if we can only learn
the language.

• Perhaps precision data can help reduce its own theoretical uncertainties.
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