

Composite Higgs and Naturalness overview - Experiment

Tobias Golling, University of Geneva

Naturalness, October 14-17 2014, Weizmann

Signature-Driven Searches

Composite Higgs (CH) Paradigm

- Models where the Higgs boson is a composite state give a natural solution to the hierarchy problem
- DM can be incorporated naturally in CH models
- The Higgs boson can be light if it is a PNGB emerging from the breaking of a global symmetry (e.g. SO(5) → SO(4))
 - Just like π much lighter than ρ (in QCD)
- Partial compositeness:
 - SM fermions mix linearly with composite fermions
 - Fermion mass generation needs separate composite partner for each SM fermion
- Many models exits; CH also dual to gravity in higher dimensions / RS (5D field theory is perturbative = calculable)

Basic Phenomenology

- New heavy gauge bosons (to fully unitarize Vector boson scattering) → Drell-Yan produced Z', W', KK g
 - Strong coupling limit, mainly decays to WW, WZ, Wh, Zh, tt̄, tb̄
- New fermionic resonances (usually lighter than gauge bosons, tame radiative corrections to Higgs from top quark) → top/bottom partners
- Not subject of this talk:
 - Twin Higgs: displaced vertex signatures → see Matt Strassler in panel "What have we missed"
 - (Partially) composite top quark can be strongly coupled to the resonances of the EWSB sector → anomalous top-Higgs interactions (t̄tH → more in Run II)
 - Deviations in Higgs couplings to fermions and vector bosons, see e.g. ATLAS-CONF-2014-010
 - EWPTs

Possible Spectrum

Top/Bottom Partners aka VLQs

- Considering four different kinds of Vector-Like Quarks (VLQs) with different charge
- Come in singlets, doublets, triplets

$$-T (+2/3)$$
 $-B (-1/3)$
 $-X (+5/3) - aka T5/3$
 $-Y (-4/3)$

JHEP 11, 030 (2009)		(triplets not included)	
	Label	Charge	Decay mode
T singlet	Ts	+2/3	T-→W+b, Zt, ht
B singlet	Bs	-1/3	B→W⁺t, Zb, hb
(T,B) doublet	TB₀	(+2/3, -1/3)	T→W+b, Zt, ht B→W+t, Zb, hb
(X,T) doublet	ΧΤ _d	(+5/3, +2/3)	X→W+t T→Zt, ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B→Zb, hb Y→W⁺b

VLQ Production Modes at the LHC

- Strongly produced in pairs: large QQ cross-section only dependent on mass (just like tt̄)
- Single production dependent on mass, charge, coupling (like single top)

EWPTs:

 $V_{Tb} \le 0.1$ (applies to single multiplet)

Relaxed for >1 multiplet (well motivated in CH models)

VLQ Decay Modes

VLQ Pair Signature

Spectacular signatures: boosted b-jets, tops, W, Z, H bosons

VLQ Pair Production: TT

Possible Final States for TT (I+jets)

TT→ Ht+X Search Strategy (I+jets)

- Require lepton and MET (W→Iv)
- ≥ 6 jets
- ≥ 4 b-jets
- Final discriminant: H_T(I,v,jets)

VLQ TT Search Strategy

VLQ TT→HtHt (all-hadronic)

- ≥ 2 CA R=1.5 jets, p_T > 150 GeV
 - ≥ 1 top candidate : HTT-tag + ≥ 1 b-tagged subjet
 - ≥ 1 Higgs candidate: 2 subjet b-tags & m_{bb} > 60 GeV

QCD BG estimated from data from sidebands of top- and Higgs-tag

VLQ Ht+X, $H \rightarrow \gamma \gamma$

- Very high purity
- Loose kinematic selection (mainly H_T)
- Suffers from low BR($H\rightarrow \gamma\gamma$) factor ~300 smaller than BR($H\rightarrow b\bar{b}$)

At high mass scale: kinemtic cuts (e.g. H_T) & using dedicated ID for dominant decay modes typically work best (quite different for t̄tH)

VLQ TT Search Strategy

(not a combination, just overlaying results)

Same-Sign Lepton Search targeting T_{5/3}

Using top-tagging, boosted W-jets and H_T to reject the background

VLQ TT Search Strategy

m(Zb) [GeV]

VLQ TT Search Strategy

VLT

VLB

BB→HbHb, H→bb

- Higgs tagging of CA R=0.8 jets based on jet substructure (τ₂₁), subjet b-tagging and jet mass
- ≥1 Higgs tags, and =1 or ≥2 extra b-tags
- Dominant multijets BG from Higgs-mass sideband
- Exp: $m_B > 800 \text{ GeV} @ 95\% \text{ CL}$ for BR(B \rightarrow Hb)=1

25

Single VLQ (T/B→Zt/b)

Forward jet tagging:

Assuming:

$$\lambda_T = 2 \text{ (Tbq)}$$

 $X_{bB} = 0.5 \text{ (Bbq)}$

VLQs @ 13 TeV

⇒ Single production important for Run II

More VLQ searches in backup

- More inclusive VLQ searches
 - PLB 729 (2014) 149
 - CMS PAS B2G-12-019
- Composite light generations
 - ATLAS-CONF-2012-137

Possible Spectrum

KK gluons → tt (l+jets)

Exclude @ 95% CL:

- Leptophobic top color Z'
 - $m < 2.1 \text{ TeV } (\Gamma/m=1.2 \%)$
- RS KK gluon
 - $m < 2.5 \text{ TeV } (\Gamma/m = 15\%)$

See also dileptonic search here: CMS PAS B2G-12-007 (less sensitive due to smaller BR)

- Discriminant: m_{tb} or BDT
- Also present limits vs coupling

10³

10²

W'→tb (all-jets & combination)

WZ→IvII Resonances

Dominant WZ BG cross-checked in CR

ZV→IIjj / IIJ Resonances

Use BDRS-A splitting & filtering a for CA 1.2 jets to tag V-jets [ATL-PHYS-PUB-2014-004]

Z+jets BG from V-mass sidebands

m_{w'} [GeV]

CMS

CMS data ($\mu\nu + e\nu$)

W+Jets

WW/WZ/ZZ

2000

1800

 $L = 19.7 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV}$

Use N-subjettiness for CA 0.8 jets to tag V-jets

$VV \rightarrow JJ$

Same V-jet tagger as on previous slide

BG described by empirical fit

VV → IIJ / IvJ / JJ Combination

Bulk RS graviton benchmark ($k/\overline{M}_{PL} = 0.5$)

HH→4b Resonances

Backgrounds:

- Multi-jet (90%): data-driven method
- tt (10%): Shape from MC, normalization from data

- RS graviton (k/\overline{M}_{PL} = 1) excluded at 95% CL for masses between 590 GeV and 710 GeV
- Theory XS ~ $(k/\overline{M}_{PL})^2$

Long Summary – not meant to be readable!

CMS Searches for New Physics Beyond Two Generations (B2G)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Short Summary

- Mass exclusions @ 95% CL
 - VLQs up to ~800 GeV
 - Leptophobic top color Z' with m < 2.1 TeV ($\Gamma/m=1.2 \%$)
 - RS KK gluon with m < 2.5 TeV (Γ /m= 15%)
 - W' \rightarrow tb up to \sim 2 TeV
 - Diboson resonances getting close to 2 TeV

Looking deep into the Future

Conclusion & Outlook

- Many Exotics searches motivated by CH models
 - Signature-based search + interpretation using benchmark
- Run II entering interesting mass scale for CH
 - Top, W, Z, H decay modes with largest BR most promising at high mass end
 - Identification of boosted top quarks, W, Z, H bosons are essential and will remain a focus
 - Direct searches complemented by Higgs precision measurements
 - Extend searches to single VLQ and light-flavor VLQ
 - And there is more..., e.g. displaced vertices anything we are missing?

Backup

Inclusive VLT Search

- Single leptons
- Multilepton: OS- (on-/off-Z), SS- and tri-leptons

Inclusive VLT & VLB Searches

- Single lepton, ≥4 jets, ≥1 b-jets
- 0, 1, ≥2 V-tags

Composite light generations

- Select W→lv / Z→lĪ and 2 jets
- Reconstruct m(Q)=m(W/Z+jet)
- Phenomenological fit to m(Q)

(Large production cross sections)

- Exclude @ 95% CL (coupling=1)
 - $m(U_{2/3}) < 1080 \text{ GeV}$
 - $m(D_{1/3}) < 1120 \text{ GeV}$
 - $m(X_{5/3}) < 1420 \text{ GeV}$

Run II Outlook

Hidden Valley: Long-Lived Particles

Many More Searches

- Lepton Flavor Violation
- Black Hole / TeV gravity / Jet extinction
- Heavy Neutrinos / See-saw / Vector-Like Leptons
- Many other resonance searches: jj, ll, lv, bb, ττ, γγ, γjet, Wγ, Zγ,...
- Excited leptons
- Contact interactions: jj, II,...
- Displaced objects
- Monopoles & multi-charged particles
- Generic multi-lepton and same-sign lepton searches

• ...

First sign of New Physics?

BACKYARD SNOW TRACKING GUIDE

