Naturalness $\&$ Compositeness 2014

Riccardo Rattazzi, EPFL

Technicolor in the III Millenium

Riccardo Rattazzi, EPFL

If
$$
O|_{\exp} \ll \max|O_i|
$$
 it seems we are missing something

Un-Naturalness = failure of dimensional analysis and selection rules

Mass Hierarchies

Naturalness of $\Lambda_{IR} \ll \Lambda_{UV}$ stability of fixed point

3 options

1. Marginality

$$
\mathcal{L}_{\text{mass}} = c \Lambda_{UV}^{\epsilon} \mathcal{O}_{4-\epsilon}
$$

$$
\Lambda_{IR}^{\epsilon} = c \Lambda_{UV}^{\epsilon} \Lambda_{IR} = c^{1/\epsilon} \Lambda_{UV}
$$

algebraically small c and ϵ is enough to produce hierarchy see Strassler arXiv:hep-th/0309122

Ex: Yang-Mills, TechniColor, Randall-Sundrum model

2. Symmetry

$$
\Lambda_{IR}\,=\,\sqrt{\epsilon}\,\Lambda_{UV}
$$

- ϵ must be *hierarchically* small
- how does this smallness originate?

Ex: QCD, Supersymmetry

3. Sequestering

 $\overline{}$ Λ_{UV}

3. Sequestering

 Λ_{UV} <u> 1999 - Johann Barnett, f</u>

 Λ_{IR}

 Λ_{IR}

 Λ_{IR} \sim $\epsilon \Lambda_{UV}$ technically natural

• SFT2 = 'UV completion of gravity' $\epsilon = \Lambda_{UV}/M_P$ • not clearly compatible with basic principles

• but imagine we find a gorgeous candidate for SFT1?

Salvio, Strumia 2012

a-gravity

a-strumia

by

Ex.

The Standard Model

but tuning comes with a bonus

$$
\mathcal{L}_{SM} = \frac{\mathcal{L}^{(d\leq 4)}}{\Lambda_{UV}} + \frac{1}{\Lambda_{UV}} \mathcal{L}^{(5)} + \frac{1}{\Lambda_{UV}^2} \mathcal{L}^{(6)} + \dots
$$

- *Accidentally* possesses all the symmetries we observe in Nature: B, L, Flavor,...
- Not the case in any natural completion of the SM

Composite Higgs Scenario

$$
H = \begin{pmatrix} h_1 + ih_2 \\ h + ih_3 \end{pmatrix}
$$

must be a pseudo-Golstone multiplet

Ex.: $H \in SO(5)/SO(4)$

Georgi, Kaplan '84 Banks '84

Arkani-Hamed, Cohen, Katz, Nelson '02 Agashe, Contino, Pomarol '04

EWSB is *broadly* described by

Flavor

The two ways to Flavor

Bilinear: ETC, conformalTC

Dimopoulos, Susskind Holdom

> Luty, Okui

Linear: partial compositeness

D.B. Kaplan

....

Huber RS with bulk fermions

The two ways to Flavor

Bilinear: ETC, CISIAVOLEG C Dimopoulos, Susskind Holdom Luty, Okui disfavored by CFT 'theorems' Rychkov, Rattazzi, Tonni, Vichi 2008 Poland, Simmons-Duffin, Vichi 2011

Linear: partial compositeness

D.B. Kaplan

.... Huber RS with bulk fermions

- Hypothesis seems a bit wishful, but no other option is in sight
- Problems of minimal technicolor greatly alleviated, but not eliminated

Flavor transitions controlled by selection rules (accidental non-compact $U(1)^9$ flavor symmetry)

 $\epsilon_q^i \epsilon_d^j \epsilon_d^k \epsilon_d^l \times \frac{g_*}{m^2} \left(\bar{q}^i \gamma^\mu d^j \right) \left(\bar{q}^l \gamma_\mu d^\ell \right)$ *j* $\frac{j}{d}\epsilon_{q}^{k}\epsilon_{d}^{\ell}$ $\frac{\ell}{d} \times \frac{g^2_{*}}{m^2}$ ∗ m_\ast^2 ∗

 $\triangle F=1$

 $\epsilon_q^i \epsilon_u^j g_* \times \frac{v}{m^2} \times \frac{g_*}{16\pi^2} \bar{q}^i \sigma_{\mu\nu} u^j G_{\mu\nu}$ \overline{v} m_\ast^2 ∗ $\times \frac{g_*^2}{16\pi}$ ∗ $16\pi^2$

$$
m_{*} > \begin{vmatrix} \Delta F=2 \\ (\epsilon_{K},...) \\ 15 \end{vmatrix} \xrightarrow{\Delta F=1} \begin{vmatrix} \text{edms} \\ (\Delta c_{CP}^{D}, \epsilon'/\epsilon, b \rightarrow s\gamma) \\ \frac{g_{*}}{4\pi} \times (10-15) \end{vmatrix} \xrightarrow{\frac{g_{*}}{4\pi} \times (50-200)} \begin{vmatrix} \mu \rightarrow e\gamma \\ \frac{g_{*}}{4\pi} \times 200 \end{vmatrix}
$$

Partial compositeness is likely not the full story Flavor and CP symmetry must be assumed

$U(1)_e$ x $U(1)$ μ x (1) τ

....

 $SU(3)$ x $SU(3)$ x ...

Redi, Weiler '11 Barbieri et al. '12

The most *clever* set up

 $SU(3)_{comp} \times SU(3)_Q \times SU(3)_D \times SU(2)_U$ Redi 2012

sufficiently small to satisfy bounds from light quark compositeness sufficiently large to avoid sizeable flavor violation from $~\lambda$ $\hat{\lambda}$ *U,D* $\epsilon_{U,D}$

 ϵ_{t_R} [sufficiently large to confortably account for top Yukawa $y_t = |\hat{\lambda}|$ $\hat{\lambda}$ t ^{$|\epsilon_{t_R}$} CP conserving strong dynamics phase alignment controls edms

 $\epsilon_U \sim 0.2 - 0.5$ \longrightarrow constrainst from compositeness and $\hat{\lambda}_U$ subdominant

 Uneliminable effect via the top doublet

$$
V_{ti}
$$
\n
$$
V_{tj}
$$

$$
m_* g_* \geq \frac{5 \text{ TeV}}{\epsilon_{t_R}^2} \geq 5 \text{ TeV}
$$

Higgs's mass versus top-partners'

$$
y_t \sim \epsilon_{t_L} \epsilon_{t_R} g_* \qquad \epsilon_{t_R} = 1
$$

 t_R best option t_R is fully composite SO(5) singlet $\epsilon_{t_L} g_* = y_t$

Mrazek et al, 'II Panico, Wulzer '11 Pomarol, Riva '12

$$
V(h) = \frac{m_*^4}{g_*^2} \times \frac{y_t^2}{16\pi^2} \times F(h/f)
$$

Higgs's mass versus top-partners'

$$
y_t \sim \epsilon_{t_L} \epsilon_{t_R} g_* \qquad \epsilon_{t_R} = 1
$$

 t_R best option t_R is fully composite SO(5) singlet $\epsilon_{t_L} g_* = y_t$

Mrazek et al, 'II Panico, Wulzer '11 Pomarol, Riva '12

$$
V(h) = \frac{m_*^4}{g_*^2} \times \frac{y_t^2}{16\pi^2} \times F(h/f)
$$

The connection between g_*, m_*, m_t and m_h

$$
V = \frac{3y_t^2 m_*^2}{16\pi^2} \left(ah^2 + bh^4/f^2 + \dots \right)^{-b} \xrightarrow{\frac{a}{b} < \xi}
$$

$$
\xi \equiv \frac{v^2}{f^2} = \frac{a}{b}
$$

$$
m_h < 125 \text{ GeV}
$$

$$
m_h < 125 \text{ GeV}
$$

$$
m_h < 125 \text{ GeV}
$$

Total tuning ~ area =
$$
a b = \left(\frac{430 \text{ GeV}}{m_*}\right)^2 \times \frac{4}{g_*^2}
$$

De Simone, Matsedonskyi, RR, Wulzer 2012

Notice impact of 125 GeV Higgs

$$
m_h = 125 \,\text{GeV}
$$
\n
$$
a b = \left(\frac{430 \,\text{GeV}}{m_*}\right)^2 \times \frac{4}{g_*^2}
$$

weakly strong EWSB sector and light resonances preferred

$$
m_h = 250 \,\text{GeV}
$$
\n
$$
a b = \left(\frac{860 \,\text{GeV}}{m_*}\right)^2 \times \frac{16}{g_*^2}
$$

moderately strong and heavy EWSB sector

Higgs couplings

No other parameter at $c \rightarrow 6^{6}$ a summer

leading order in
$$
g_{SM}^2/g_{*}^2
$$

EWPT

$$
\Delta \epsilon_3 = O(1) \times \frac{m_W^2}{m_*^2} + \frac{g^2}{96\pi^2} \frac{v^2}{f^2} \ln(m_*/m_h)
$$

$$
m_* \gtrsim 2 \text{ TeV}
$$

$$
\Delta \epsilon_1 = \delta \rho_{SM} \times \frac{m_t^2}{m_*^2} - \frac{3g^2 \tan \theta_W^2}{32\pi^2} \frac{v^2}{f^2} \ln(m_*/m_h)
$$

 $\xi \equiv$ in principle very strong bound :

$$
\xi \equiv \frac{v^2}{f^2} \lesssim 0.05
$$

in practice it could be relaxed by short distance contribution

Franco, Mishima, Silvestrini 2013

Direct searches (LHC 8TeV)

• Top partners $(Q=-1/3, 2/3, 5/3)$ *^m*[∗] *>* $≥ 1$ TeV

• Vector resonances

$$
\sum_{\bar{q}} \sum_{\mathbf{M}} \mathbf{M} \mathbf{M} = \frac{g_W^2}{g_*} < g_W
$$

CMS data Pappadopulo, Thamm, Torre, Wulzer 2014

g[∗] = 1 *g*[∗] = 3 $\left\{\right.$ \bigcap $\left\{ \right.$

 m_* > 3 TeV

 m_* > 2 TeV

Pappadopulo, Thamm, Torre, Wulzer 14

In my opinion

- Compositeness remains a comparatively viable option to solve the hierarchy problem.
- It also forces us to think more and better about QFT
- Flavor is its major structural drawback
- Flavor and EWPT make the outcome of LHC8 unsurprising
- LHC13 and HL-LHC will definitely break new grounds