

Rare decays in LHCb

Diego Martinez Santos (NIKHEF and VU Amsterdam)

On behalf of the LHCb Collaboration

Naturalness 2014, Weizmann Institute of Science. Rehovot

Rare Decays results from LHCb

- The LHCb experiment
 - Detector
 - Indirect searches for New Physics
- Very rare decays
 - $B_s \rightarrow \mu\mu, B_d \rightarrow \mu\mu$
 - Rare strange decays
 - Rare charm decays
 - Other very rare decays
- The rare decays $B \rightarrow K(*) \mu \mu$
 - Angular analysis
 - Lepton universality tests
- Not covered here: radiative decays

The LHCb experiment

Forward spectrometer with very precise tracking and PID

- Decay time resolution $40 \text{ fs} (B \rightarrow J/\psi KK)$
- Invariant mass resolution ~23 MeV (B→µµ)
- 95% (K-π) ID efficiency for 5% fake rate

Efficient and flexible trigger $\epsilon \sim 90\%$ B $\rightarrow \mu\mu$ decays

Recorded luminosity: 3 fb⁻¹

1 fb⁻¹ at 7 TeV (2011) 2 fb⁻¹ at 8 TeV (2012)

Also, took 13nb⁻¹ of pA data

The LHCb experiment

- The LHCb physics program focuses mostly on CP violation and rare decays
- Both correspond to indirect searches for New Physics (i.e, new particles),
- Indirect approach has been very successful in the past
 - Neutral Currents

 (Z⁰ inferred ten years before direct observation)
 - Kaon mixing (top-quark inferred 30 years before direct observation)

The LHCb experiment

- The LHCb physics program focuses mostly on CP violation and rare decays
- Both correspond to indirect searches for New Physics (i.e, new particles),
- Indirect approach has been very successful in the past
 - Neutral Currents (Z⁰ inferred ten years before direct observation)
 Kaon mixing
 - (top-quark inferred 30 years before direct observation)

(you may also notice Earth' radius was inferred indirectly 2.3k years before direct observation...)

Eratosthenes

~2.3 K years till the direct observation...

Naturalness 2014, Weizmann Institute of Science. Rehovot

VERY RARE DECAYS

Naturalness 2014, Weizmann Institute of Science. Rehovot

$$B_{s(d)} \rightarrow \mu\mu$$

These decays are very supressed in SM $BR(B_s \rightarrow \mu\mu) = (3.66 \pm 0.23) \times 10^{-9}$ $BR(B_d \rightarrow \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$ (t)... but can be modified by NP.

PRL 112, 101801 (time averaged)

Scenarío	Would point to →
BR(Bs→μμ) >> SM	Big enhancement from NP in the scalar sector, SUSY at high tanß
BR(Bs→μμ) ≠ SM	SUSY, ED's, LHT, TC2
BR(Bs→µµ)≈SM	Anything (\rightarrow rule out regions of parameters space that predict sizable departures w.r.t SM)
BR(Bs→µµ) < <sm< td=""><td>NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate</td></sm<>	NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate
BR(Bs→μμ)/BR(Bd→μμ) ≠ SM	CMFV ruled out. New FCNC independent of CKM matrix (RPV-SUSY, ED's,etc)
Natura	Iness 2014, Weizmann Institute

of Science. Rehovot

$B_{s(d)} \rightarrow \mu \mu$ (LHCb analysis strategy)

Phys. Rev. Lett. 111 (2013) 101804

I) Selection cuts in order to reduce the amount of data to analyse.

II) Classification of $B_{s,d} \rightarrow \mu \mu$ events in a 2D space

- Invariant mass of the µµ pair
- Boosted Decision Tree (BDT) combining geometrical and kinematical information about the event.

III) Control channels ($B \rightarrow hh$, $B \rightarrow J/\psi K$, mass sideb.) to get signal and background expectations w/o relying on simulation

IV) Fit for signal strength : simultaneous fit of the mas spectrum in the different BDT regions

$B_{s(d)} \rightarrow \mu \mu$ (results)

Full Run-I dataset analysed, giving:

$$\begin{aligned} &\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(\text{stat})^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9} , \\ &\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(\text{stat})^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10} \end{aligned}$$

Phys. Rev. Lett. 111 (2013) 101804

$B_{s(d)} \rightarrow \mu \mu$ (results)

Full Run-I dataset analysed, giving:

$$\begin{split} &\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (2.9 \,{}^{+1.1}_{-1.0}(\text{stat}) \,{}^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9} \,, \\ &\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7 \,{}^{+2.4}_{-2.1}(\text{stat}) \,{}^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10} \end{split}$$

Phys. Rev. Lett. 111 (2013) 101804

Combined with CMS (joint likelihood fit) CMS: Phys. Rev. Lett. 111, 101805 6.2 observation of $B_s \rightarrow \mu\mu$

3.2 evidence for $B_d \rightarrow \mu \mu$

$$\mathcal{BR}(B_s \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$$
$$\mathcal{BR}(B_d \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$$

Ratio B_s/B_d compatible with SM at 2.3 σ

of Science. Rehovot

$B_{s(d)} \rightarrow \mu \mu$ (what does it imply?)

Scenarío-	Would point to →
BR(Bs→μμ) >> SM	Big enhancement from NP in the scalar sector, SUSY at high tanß
BR(Bs→μμ) ≠ SM	SUSY, ED'&, LHT, TC2
BR(Bs→μμ)≈SM	Anything (\rightarrow rule out regions of parameters space that predict sizable departures w.r.t SM)
BR(Bs→μμ) < <sm< td=""><td>NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate</td></sm<>	NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate
BR(Bs→μμ)/BR(Bd→μμ) ≠ SM	CMFV ruled out. New FCNC fully independent of CKM matrix (RPV-SUSY, ED's,etc)

$B_{s(d)} \rightarrow \mu \mu$ (what does it imply?)

Scenarío -	Would point to
BR(BS-A) ASM ANA M	Big enhancement from NP in the scalar sector, SUSY at high tanb
BR(BS HUN) ≠ SM	SUSY, ED'&, LHT, TC2
BR(Bs→μμ)≈SM	Anything (\rightarrow rule out regions of parameters space that predict sizable departures w.r.t SM)
BAGBANNAMARAN	NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate
BR(Bs→μμ)/BR(Bd→μμ) ≠ SM	CMFV ruled out. New FCNC fully independent of CKM matrix (RPV-SUSY, ED's,etc)

... You expect some constraints at least in SUSY at high $tan\beta$

Naturalness 2014, Weizmann Institute of Science. Rehovot

$B_{s(d)} \rightarrow \mu \mu$ (what does it imply?)

Fraction of points from a flat scan which survive $B_s \rightarrow \mu\mu$ constraint

Rare charm decays: $D^0 \rightarrow \mu\mu$

SM prediction: $BR(D^0 \rightarrow \mu\mu) < 1.6 \times 10^{-11}$ (Precision depends on knowledge of $BR(D^0 \rightarrow \gamma\gamma)$)

BSM physics (RPV, ED's) can enhance it up to the 10⁻¹⁰ level

Rare charm decays: $D^0 \rightarrow \mu\mu$

SM prediction: BR($D^0 \rightarrow \mu \mu$) < 1.6x10⁻¹¹ (Precision depends on knowledge of BR($D^0 \rightarrow \gamma \gamma$)) BSM physics (RPV, ED's) can enhance it up to the 10^{-10} level CLs LHCb LHCb performed a search using 1 fb⁻¹ $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \ (7.6) \times 10^{-9} \text{ at } 90\% \ (95\%) \text{ CL}$ 0.4 0.2 $BR(D^0 \rightarrow \mu \mu) < 6.2(7.6) \times 10^{-9} @ 90(95) \% CL_s$ 0 0.5 0 $B(D^0 \to \mu^+ \mu^-)[10^{-8}]$

Potential to reach more interesting region with LHCb upgrade

Other rare charm decays

	Run –I	Run- II	Upgrade	Status
$D^+_{(s)} \to \pi^+ \mu^+ \mu^-$	Few 10 ⁻⁸	Fewer 10 ⁻⁸	Few 10 ⁻⁹	1/3 Run-I arXiv:1304.6365, Phys. Lett. B 724 (2013) 203-212
$D^+_{(s)} \to \pi^- \mu^+ \mu^+$	Few 10 ⁻⁸	Fewer 10 ⁻⁸	Few 10 ⁻⁹	1/3 Run-I arXiv:1304.6365, Phys. Lett. B 724 (2013) 203-212
$D_s^+ \to K^+ \mu^+ \mu^-$	Few 10 ⁻⁷	Fewer 10 ⁻⁷	Few 10 ⁻⁸	Work ongoing
$D^0 ightarrow h^+ h'^- \mu^+ \mu^-$	Few 10 ⁻⁷	Fewer 10 ⁻⁷	Few 10 ⁻⁸	Work ongoing
$\Lambda_c^+ \to p \mu^+ \mu^-$	Few 10 ⁻⁷	Fewer 10 ⁻⁷	Few 10 ⁻⁸	Work ongoing
$D^0 o \mu e$	Few 10 ⁻⁸	Fewer 10 ⁻⁸	Few 10 ⁻⁹	Work ongoing
$\sigma(A_{CP}D^0\to\phi\gamma)$	~10%	5%	?	Work ongoing

Rare strange decays: introduction

- Minimal Flavour Violation motivated by search of NP ~ TeV
- But if NP > few TeV, non-MFV scenarios become very interesting
- In such contest rare decays of strange particles are very important : s→d transitions have the strongest CKM suppression (i.e, strongest suppression of SM "background")

$$A = A_0 \begin{bmatrix} c_{SM} \frac{1}{M_W^2} + c_{NP} \frac{1}{\Lambda^2} \end{bmatrix}$$
$$\sim V_{ts} V_{td} \sim 10^{-4} \quad From G. \, Isidori @ Rare'n'Strange$$

LHCb can explore rare decays of K_s and hyperons: Big effective kaon flux ~10¹³ K_s /y

Rare strange decays: $K_S \rightarrow \mu\mu$

- SM prediction: BR($K_S \rightarrow \mu\mu$) = (5.1±1.5)x10⁻¹² JHEP 0401 (2004) 009
- $K_S \rightarrow \mu\mu$ sensitive to different physics than $K_L \rightarrow \mu\mu$ (see JHEP 0401 (2004) 009)
- If NP is found in NA62, then limits of $K_S \rightarrow \mu\mu$ in the 10⁻¹¹-10⁻¹² range useful to understand its nature

Rare strange decays: $K_S \rightarrow \mu \mu$

- SM prediction: BR(K_S $\rightarrow \mu\mu$) = (5.1±1.5)x10⁻¹² JHEP 0401 (2004) 009
- $K_S \rightarrow \mu\mu$ sensitive to different physics than $K_L \rightarrow \mu\mu$ (see JHEP 0401 (2004) 009)
- If NP is found in NA62, then limits of $K_S \rightarrow \mu\mu$ in the 10⁻¹¹-10⁻¹² range useful to understand its nature
- LHCb performed a search using 1fb⁻¹:

10⁻¹³

Rare strange decays: $K_s \rightarrow \mu\mu$

- SM prediction: BR($K_S \rightarrow \mu\mu$) = (5.1±1.5)x10⁻¹² JHEP 0401 (2004) 009
- $K_S \rightarrow \mu\mu$ sensitive to different physics than $K_L \rightarrow \mu\mu$ (see JHEP 0401 (2004) 009)
- If NP is found in NA62, then limits of $K_S \rightarrow \mu\mu$ in the 10⁻¹¹-10⁻¹² range useful to understand its nature
- LHCb performed a search using 1fb⁻¹:

<u>د</u>

Naturalness 2014, Weizmann Institute of Science. Rehovot

- LHCb will keep being world leading on $K_S \rightarrow \mu\mu$
- **Most interesting region** (BR($K_S \rightarrow \mu\mu$) < 10⁻¹⁰) might be achievable with LHCb upgrade (**requires trigger developments**)
- Sensitivity to other decays under investigation:
- $\Sigma \rightarrow p\mu\mu$: aim to confirm / reject Hyper CP anomaly

- LHCb will keep being world leading on $K_S \rightarrow \mu\mu$
- **Most interesting region** (BR($K_S \rightarrow \mu\mu$) < 10⁻¹⁰) might be achievable with LHCb upgrade (**requires trigger developments**)
- Sensitivity to other decays under investigation:
- $\Sigma \rightarrow p\mu\mu$: aim to confirm / reject Hyper CP anomaly
- K_S → π⁰μμ: K_L → π⁰μμ (sensitive to eg, ED) NP reach is limited by experimental uncertainty on K_S → π⁰μμ. We might have a chance to improve that (requires trigger developments)

- LHCb will keep being world leading on $K_S \rightarrow \mu\mu$
- **Most interesting region** (BR($K_S \rightarrow \mu\mu$) < 10⁻¹⁰) might be achievable with LHCb upgrade (**requires trigger developments**)
- Sensitivity to other decays under investigation:
- $\Sigma \rightarrow p\mu\mu$: aim to confirm / reject Hyper CP anomaly
- K_S → π⁰μμ: K_L → π⁰μμ (sensitive to eg, ED) NP reach is limited by experimental uncertainty on K_S → π⁰μμ. We might have a chance to improve that (requires trigger developments)
- Other possibilities under investigation: $K_S \rightarrow \pi \pi \mu \mu$, $K_S \rightarrow \mu \mu \mu \mu$, electron modes...

LHCb can do kaon/hyperon physics

However, in many cases, looking for a given channel will require us to develop triggers

If you have some idea of a new interesting channel please shout

 $B_{s(d)} \rightarrow \mu \mu \mu \mu$

Other very rare decays @ LHCb

		b	
Decay	Main BSM test	95% upper limit	
$B_s \rightarrow μμμμ$	Some SUSY scenarios	<1.6x10 ⁻⁸ (PRL. 110, 211801)	
Β _d →μμμμ	Some SUSY scenarios	<6.6x10 ⁻⁹ (PRL. 110, 211801)	
τ→μμμ	LFV (ex: LHT)	<5.6x10 ⁻⁸ (arXiv:1409.8548) (still below B-factories sensitivity)	
B _s →eµ	RPV, Pati-Salam LQ	$<1.4 ext{x}10^{-8}$ (prl 111 141801) M_{LQ}	$(B_s^0 \to e^{\pm} \mu^{\mp}) > 106 \text{ TeV}/c^2$
B _d →eµ	RPV, Pati-Salam LQ	$<3.7 \times 10^{-9}$ (PRL 111 141801) M_{LQ}	$(B^0 \to e^{\pm} \mu^{\mp}) > 127 \text{ TeV}/c^2$
$B \rightarrow X \mu^+ \mu^+$	4 th gen. Majoranas	See Phys. Rev. D 85, 112004	A good example of flavour physics
	(arXiI	references in backup)	accessing high

(arAiv references in backup)

accessing ingit energy scales

$B_d \rightarrow K^* (\rightarrow K\pi) \mu\mu$

Naturalness 2014, Weizmann Institute of Science, Rehovot

$B_d \rightarrow K^*(\rightarrow K\pi) \mu\mu$

• We select events using a BDT and special vetoes for specific backgrounds

• Correct (in an event-by event basis) for the effect of reconstruction/selection/trigger using simulation

• Validated on data via control channels (mainly $B_d \rightarrow J/\psi(\mu\mu) K^*(K\pi)$)

• Fit yields and angular distributions for observables in bins of q² (dimuon invariant mass squared)

$B_d \rightarrow K^*(\rightarrow K\pi) \mu\mu$

$B_d \rightarrow K^*(\rightarrow K\pi) \mu\mu$

Phys. Rev. Lett. 111, 191801

PDF can also be parameterized to minimize form factors uncertainties

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right] - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin^2\theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_\mathrm{L}(1 - F_\mathrm{L})}}$$

Local discrepancy with SM prediction of 3.70

LEE-corrected SM p-value of this analysis is 0.5%

Experimental precision will keep improving q² Work ongoing in the theory community (SM/NP) to better understand this bin

Naturalness 2014, Weizmann Institute of Science. Rehovot

Phys. Rev. Lett. 113, 151601

Lepton Universality

LHCb performed a lepton universality test in $B^+ \rightarrow K^+ \ell^+ \ell^-$ with full Run-I dataset

$$R_{K} = \frac{BF(B^{+} \to K^{+} \mu^{+} \mu^{-})}{BF(B^{+} \to K^{+} e^{+} e^{-})}$$
$$= 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

Work ongoing to test lepton universality in $K^*\ell^+\ell^$ and $\Phi\ell^+\ell^-$ models

Results on b ->sll

Measurement	Luminosity	Reference
$BR(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$	1 fb ⁻¹	JHEP 12 (2012) 125
$BR(B_d \rightarrow K^*e^+e^-)$	1 fb ⁻¹	JHEP 05(2013) 159
$B_d \rightarrow K^* \mu^+ \mu^-$, angular analysis (I) (A_{FB} , F_L , S_3)	1 fb ⁻¹	JHEP 1308 (2013) 131
$B_s \rightarrow \Phi \mu^+ \mu^-$, angular analysis	1 fb ⁻¹	JHEP 1307 (2013) 084
$BR(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)$	1 fb ⁻¹	PLB 725 (2013) 25
Resonance searches in $B^+ \rightarrow K^+ \mu^+ \mu^-$	3 fb ⁻¹	PRL 111, 112003 (2013)
$B_d \rightarrow K^* \mu^+ \mu^-$, angular analysis (II) (P'_i)	1 fb ⁻¹	PRL 111, 191801 (2013)
$B \rightarrow K^{(*)} \mu^+ \mu^-$, BR and Isospin Asymmetry	3 fb ⁻¹	JHEP 06 (2014) 133
$B \rightarrow K \mu^+ \mu^-$, A_{FB} , F_H	3 fb ⁻¹	JHEP 05 (2014) 082
$B \rightarrow Kl^+l^-$ Lepton universality	3 fb ⁻¹	PRL 113, 151601 (2014)
$B \rightarrow K^{(*)} \mu^+ \mu^- CP$ asymmetries	3 fb ⁻¹	JHEP 09 (2014) 177
$BR(B^+ \rightarrow hhh\mu^+\mu^-)$	3 fb ⁻¹	JHEP 1410 (2014) 064

(arXiV references in backup)

Naturalness 2014, Weizmann Institute of Science. Rehovot

Conclusions

- $B_{s(d)} \rightarrow \mu\mu$ full Run-I dataset analysed, also combined with CMS Run-I data
 - $B_s \rightarrow \mu\mu$ significance is 6.2 σ .
 - First evidence for $B_d \rightarrow \mu\mu$ (3.2 σ). Ratio B_d/B_s within SM at 2.3 σ Level
- Results and prospects for rare strange and cham decays presented
 - Study rare kaon/hyperon decays require trigger work. **If you have ideas of interesting channels, shout asap**
- $B_d \rightarrow K^* \mu\mu$ angular analysis using 1/3 of Run-I data. LEE-corrected SM p-value is 0.5% when analysing P' observables.
- Lepton universality tests on $B^+ \rightarrow K^+ \ell^+ \ell^-$ within SM prediction at 2.60

source: google osso duro

Naturalness 2014, Weizmann Institute of Science. Rehovot

RADIATIVE DECAYS

Naturalness 2014, Weizmann Institute of Science, Rehovot

PRL 112, 161801 (2014)

• Full dataset analysed

 $1/N \times dN/dcos\theta$ 0.8×0.6

0.4

0.2

0L -1

 $1/N \times dN/dcos \hat{\theta}$

0.4

0.2F

0<u>L</u>

Nominal fit No odd terms

-0.5

-0.5

- ~14k signal events in M_{Knn} [1.1,1.9] GeV
- First measurement of non-zero photon polarization in $b \rightarrow s\gamma$ transitions

LHCb

0.5

LHCb

0.5

cosθ

[1.1,1.3] GeV/c2

[1.4,1.6] GeV/c2

 $1/N \times dN/dcos\theta$ 0.0

0.4

0.2

0

 $1/N \times dN/dcos\theta$ 9.0 8.0 9.0

0.4

0.2

0

-1

-1

-0.5

-0.5

Naturalness 2014, Weizmann Institute of Science. Rehovot

Prospects on B_d \rightarrow K^* ee and B_s \rightarrow \Phi \gamma

Angular analysis of $B_d \rightarrow K^* ee$ ongoing.

Electron channel allows to go to very low q², where photon pole contribution dominates

3 fb ⁻¹ Sensitivity from toy-MC					
	$F_{ m L}$	${\rm A_{T}^{Re}}$	$A_{T}^{(2)}$	${\rm A_{T}^{Im}}$	
σ^{stat}	0.07	0.17	0.25	0.25	
$\sigma^{ m syst}$	0.03	0.05	0.05	0.05	

Time dependent analysis of $B_s \rightarrow \Phi \gamma$ is ongoing. Allows to extract photon polarization

$$\Gamma(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_s t}{2} \right)$$

 $\mathcal{A}^{\Delta} = 0.047 \pm 0.025 \pm 0.015_{\alpha_s}$ Run-I expected sensitivity: ~0.3

 $B_{s(d)}$ →μμμμ

Other very rare decays @ LHCb

			B P P P P P P P P P P P P P P P P P P P
Decay	Main BSM test	95% upper limit	s, d s
$B_s \rightarrow \mu \mu \mu \mu$	Some SUSY scenarios	<1.6x10 ⁻⁸ (arXiv:1303.1092)	μ"
B _d →μμμμ	Some SUSY scenarios	<6.6x10 ⁻⁹ (arXiv:1303.1092)	
τ→μμμ	LFV (ex: LHT)	<5.6x10 ⁻⁸ (arXiv:1409.8548) (still below B-factories sensitivity)	
B _s →eµ	RPV, Pati-Salam LQ	$<1.4 ext{x}10^{-8}$ (lhcb-paper-2013-030) $_{M}$	$M_{\rm LQ}(B^0_s \to e^{\pm} \mu^{\mp}) > 106 \ {\rm TeV}/c^2$
B _d →eµ	RPV, Pati-Salam LQ	<3.7x10 ⁻⁹ (LHCb-PAPER-2013-030)	$M_{\rm LQ}(B^0 \to e^{\pm} \mu^{\mp}) > 127 {\rm TeV}/c^2$
$B \rightarrow X \mu^+ \mu^+$	4 th gen. Majoranas	See arXiv:1201.5600	A good example of flavour physics

flavour physics accessing high energy scales

Results on b ->sll

Measurement	Luminosity	Reference
$BR(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$	1 fb ⁻¹	[arXiv:1210.2645]
$BR(B_d \rightarrow K^* e^+ e^-)$	1 fb ⁻¹	[arXiv:1304.3035]
$B_d \rightarrow K^* \mu^+ \mu^-$, angular analysis (I) (A_{FB} , F_L , S_3)	1 fb ⁻¹	[arXiv:1304.6325]
$B_s \rightarrow \Phi \mu^+ \mu^-$, angular analysis	1 fb ⁻¹	[arXiv:1305.2168]
$BR(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)$	1 fb ⁻¹	[arXiv:1306.2577]
Resonance searches in $B^+ \rightarrow K^+ \mu^+ \mu^-$	3 fb ⁻¹	[arXiv:1307.7595]
$B_d \rightarrow K^* \mu^+ \mu^-$, angular analysis (II) (P'_i)	1 fb ⁻¹	[arXiv:1308.1707]
$B \rightarrow K^{(*)} \mu^+ \mu^-$, BR and Isospin Asymmetry	3 fb ⁻¹	[arXiv:1403.8044]
$B \rightarrow K \mu^+ \mu^-$, A_{FB} , F_H	3 fb ⁻¹	[arXiv:1403.8045]
$B \rightarrow Kl^+l^-$ Lepton universality	3 fb ⁻¹	[arXiv:1406.6482]
$B \rightarrow K^{(*)} \mu^+ \mu^-$ CP asymmetries	3 fb ⁻¹	[arXiv:1408.0978]
$BR(B^+ \rightarrow hhh\mu^+\mu^-)$	3 fb ⁻¹	[arXiv:1408.1137]

$$B_{s(d)} \rightarrow \mu\mu$$

These decays are very supressed in SM

 $BR(B_{s} \rightarrow \mu\mu) = (3.54 \pm 0.30) \times 10^{-9}$ $BR(B_{d} \rightarrow \mu\mu) = (1.07 \pm 0.10) \times 10^{-10}$

Eur. Phys. J. C72 (2012) 2172, arXiv:1208.0934.

(time averaged)

(note also the high TH precision)

 $\mathbf{q} = u, c, \underline{t}$

RPV?

v

b

But several NP models could sizably modify those values, sometimes by orders of magnitude.

Naturalness 2014, Weizmann Institute of Science. Rehovot MSSM?

H⁰,A⁰

$BR(B_s^{0} \rightarrow \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9} \quad (6.3\%)$ BR(B⁰ \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10} \quad (8.5\%)

Bobeth et al. '13

$\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-} f_{B_{\mathrm{s}}}$	CKM	τ ^s _H 1.3%	<i>M</i> t 1.6%	α _s 0.1%	other param. < 0.1%	non-param. 1.5%	Σ 6.4%
$\mathbf{B}^{0} \rightarrow \mu^{+} \mu^{-} f_{\mathcal{B}_{\sigma}}$	CKM	τ _H s 0.5%	<i>M_t</i> 1.6%	α _s 0.1%	other param. < 0.1%	non-param. 1.5%	Σ 8.5%

The uncertainty of CKM matrix elements is now larger than the uncertainty on $f_{Bs,d}$

Naturalness 2014, Weizmann Institute of Science. Rehovot