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...& the future!

Take all what I’ll say with a grain of salt
                         (remember that a few years ago, I was interested in higgsless models...)

Even great minds can advocate the wrong directions



Christophe Grojean Higg Physics and Future Rehovot, Nov. 16 2o143

We all have a PhD



Christophe Grojean Higg Physics and Future Rehovot, Nov. 16 2o143

We all have a PhD
For the first time in the history of physics,

we have a *consistent* description of the fundamental constituents of matter and their 
interactions and this description can be extrapolated to very high energy (up MPlanck?)
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For the first time in the history of physics,
we have a *consistent* description of the fundamental constituents of matter and their 
interactions and this description can be extrapolated to very high energy (up MPlanck?)

My key message

• The days of “guaranteed” discoveries or of no-lose theorems in 
particle physics are over, at least for the time being ....

• .... but the big questions of our field remain wild open (hierarchy 
problem, flavour, neutrinos, DM, BAU, .... )

• This simply implies that, more than for the past 30 years, future 
HEP’s progress is to be driven by experimental exploration, 
possibly renouncing/reviewing deeply rooted theoretical bias

• This has become particularly apparent in the DM-related 
sessions:

• Direct detection experiments and astrophysics are challenging the 
theoretical DM folklore as much as the LHC is challenging the 
theoretical folklore about the hierarchy problem.

• But great opportunities lie ahead, and the current challenges are 
simply hardening theorists’ ingenuity, creativity and skills

3

MLM@Aspen’14

We all have a Post higgs Depression

https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
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MLM@Aspen’14

We all have a Post higgs Depression

Where and how does the SM break down?
Which machine(s) will reveal this breakdown?

https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
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see G. Perez’s talk

4

HEP with a Higgs boson
“If you don’t have the ball, you cannot score”

See FR,Pomarol,Gupta’14

I think this is a....

Messi-Goal!!!

http://livepage.apple.com/
http://livepage.apple.com/
https://indico.cern.ch/event/315626/session/12/contribution/28/material/slides/0.pdf
https://indico.cern.ch/event/315626/session/12/contribution/28/material/slides/0.pdf
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see G. Perez’s talk

Why going for HL-LHC? To gain more statistics! 
The winners are the channels that

1) are very rare: σ * L < O(1) @ 300/fb but σ * L > O(1) @ 3/ab 
2) do not saturate the statistical uncertainties, such that S/√B still scales like √L

(need to reduce the theoretical uncertainties as much as possible)

4

HEP with a Higgs boson
“If you don’t have the ball, you cannot score”

Now with the Higgs boson in their hands, 
particle physicists can... play as well as Germans against Brazilians

http://livepage.apple.com/
http://livepage.apple.com/
https://indico.cern.ch/event/315626/session/12/contribution/28/material/slides/0.pdf
https://indico.cern.ch/event/315626/session/12/contribution/28/material/slides/0.pdf
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HEP with a Higgs boson
“If you don’t have the ball, you cannot score”

Now with the Higgs boson in their hands, 
particle physicists can... play as well as Germans against Brazilians

Higgs as a target Higgs as a tool

• observe it in as many channels as 
possible to measure its properties

• check of the coupling structure of 
the SM and its deformations

• interpret deviations of Higgs 
couplings as a sign of NP

• a portal to New Physics

• in initial states: rare decays (BSM 
Higgs decays)

e.g., h → μτ, h → J/Ψ+γ
• in final states as an object that 
can be reconstructed and tagged
(BSM Higgs productions)

e.g., t → h+c, H → hh 

Profound change in paradigm: 
missing SM particle ➪ tool to explore SM and venture into physics landscape beyond
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What is the Higgs the name of?
The SM Higgs couplings are fixed to restore unitarity with mass

For b=a2: perturbative unitarity in inelastic channels WW → hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW → WW

LEWSB =
v2

4
Tr

�
Dµ�
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v
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For ac=1: perturbative unitarity in inelastic WW → ψ ψ 

Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10Cornwall, Levin, Tiktopoulos  ’73

Goldstone of SU(2)LxSU(2)R/SU(2)V� = ei⇥
a�a/v Dµ⌃ = gVµ

http://link.aps.org/abstract/PRL/V30/P1268
http://link.aps.org/abstract/PRL/V30/P1268
http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
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Goldstone of SU(2)LxSU(2)R/SU(2)V� = ei⇥
a�a/v Dµ⌃ = gVµ

Higgs couplings 
are proportional 

to the masses of the particles
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3

“It has to do with the EWSB”

Already first data gave evidence of:

True in the SM:

Scaling                         follows naturally if 
the new boson is part of the sector that 
breaks the EW symmetry 

It does not necessarily imply that the new 
boson is part of an SU(2)L doublet

coupling ∝ mass

Ex: composite NG boson in TC

For a non-doublet 
one naively expects:
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http://link.aps.org/abstract/PRL/V30/P1268
http://link.aps.org/abstract/PRL/V30/P1268
http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
http://cms-higgs-results.web.cern.ch/cms-higgs-results/Comb/HIG-14-009/sqr_m6summary_fit.png
http://cms-higgs-results.web.cern.ch/cms-higgs-results/Comb/HIG-14-009/sqr_m6summary_fit.png
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Figure 1: The Standard Model predicts that the Higgs couplings to fundamental fermions
are linearly proportional to the fermion masses, whereas the couplings to bosons are pro-
portional to the square of the boson masses. Left: the CMS fit to the current Higgs data,
showing good consistency with this prediction, from [8]. Right: the expected improvement
in the precision in the measurement of the Higgs couplings at the ILC, from [1].

that any new physics that screens the Higgs mass from large quantum corrections
generically leads to deviations in the Higgs couplings to photons and gluons at least
as large as 1%. Supersymmetric and composite Higgs models are prime examples of
this general pattern.

However, the size of deviations in the Higgs couplings is limited by LHC exclusions
of new particles and by precision weak interaction measurements. The deviations
predicted in all of the models above are small, at the level of about 5%, varying as
m2

h/M
2, where M is the mass of the new particles predicted in the model.

At the LHC, the uncertainties in the Standard Model predictions for the rates of
Higgs processes are of the order of 5%, and systematic errors on detection probabilities
are of the same order. In addition, only a subset of the Higgs decays can be observed
directly. Because not all Higgs decays are observed, there are further ambiguities,
discussed below. Thus, the goal for Higgs boson experiments, the measurement of
the individual Higgs couplings to accuracies of better than 1%, can be met only by
experiments at an electron-positron collider. The improvement expected from the
ILC over the current measurements is shown in Fig. 1(b) [1].
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Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM
production or decay modes. The fit assumes generation universality (u ⌘ t = c, d ⌘ b = s, and ` ⌘ ⌧ = µ). The ranges
shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers
assume (e�, e+) polarizations of (�0.8, 0.3) at 250 and 500 GeV and (�0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers
assume polarizations of (�0.8, 0) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility LHC HL-LHC ILC500 ILC500-up ILC1000 ILC1000-up CLIC TLEP (4 IPs)p
s (GeV) 14,000 14,000 250/500 250/500 250/500/1000 250/500/1000 350/1400/3000 240/350

R Ldt (fb�1) 300/expt 3000/expt 250+500 1150+1600 250+500+1000 1150+1600+2500 500+1500+2000 10,000+2600
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g 6� 8% 3� 5% 2.0% 1.1% 1.1% 0.67% 3.6/0.79/0.56% 0.79%

W 4� 6% 2� 5% 0.39% 0.21% 0.21% 0.2% 1.5/0.15/0.11% 0.10%

Z 4� 6% 2� 4% 0.49% 0.24% 0.50% 0.3% 0.49/0.33/0.24% 0.05%

` 6� 8% 2� 5% 1.9% 0.98% 1.3% 0.72% 3.5/1.4/<1.3% 0.51%

d = b 10� 13% 4� 7% 0.93% 0.60% 0.51% 0.4% 1.7/0.32/0.19% 0.39%

u = t 14� 15% 7� 10% 2.5% 1.3% 1.3% 0.9% 3.1/1.0/0.7% 0.69%
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Higgs group @ Snowmass ’13

~ Is this fit theoretically consistent? ~
can you generate a 500% deviations 

in the bottom coupling without generating other coupling 

structures not taken into account in the fit?

http://arxiv.org/abs/1310.8361
http://arxiv.org/abs/1310.8361
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Figure 1: The Standard Model predicts that the Higgs couplings to fundamental fermions
are linearly proportional to the fermion masses, whereas the couplings to bosons are pro-
portional to the square of the boson masses. Left: the CMS fit to the current Higgs data,
showing good consistency with this prediction, from [8]. Right: the expected improvement
in the precision in the measurement of the Higgs couplings at the ILC, from [1].

that any new physics that screens the Higgs mass from large quantum corrections
generically leads to deviations in the Higgs couplings to photons and gluons at least
as large as 1%. Supersymmetric and composite Higgs models are prime examples of
this general pattern.

However, the size of deviations in the Higgs couplings is limited by LHC exclusions
of new particles and by precision weak interaction measurements. The deviations
predicted in all of the models above are small, at the level of about 5%, varying as
m2

h/M
2, where M is the mass of the new particles predicted in the model.

At the LHC, the uncertainties in the Standard Model predictions for the rates of
Higgs processes are of the order of 5%, and systematic errors on detection probabilities
are of the same order. In addition, only a subset of the Higgs decays can be observed
directly. Because not all Higgs decays are observed, there are further ambiguities,
discussed below. Thus, the goal for Higgs boson experiments, the measurement of
the individual Higgs couplings to accuracies of better than 1%, can be met only by
experiments at an electron-positron collider. The improvement expected from the
ILC over the current measurements is shown in Fig. 1(b) [1].
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Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM
production or decay modes. The fit assumes generation universality (u ⌘ t = c, d ⌘ b = s, and ` ⌘ ⌧ = µ). The ranges
shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers
assume (e�, e+) polarizations of (�0.8, 0.3) at 250 and 500 GeV and (�0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers
assume polarizations of (�0.8, 0) for energies above 1 TeV. TLEP numbers assume unpolarized beams.
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Higgs group @ Snowmass ’13

~ Is this fit theoretically consistent? ~
can you generate a 500% deviations 

in the bottom coupling without generating other coupling 

structures not taken into account in the fit?

missing information to complete the picture

° width measurement?

° couplings to light particles?
inclusive (e.g. c-tagging) or exclusive (h → J/Ψ+γ)

° coupling to top?
known indirectly (gg→h) or via difficult tth channel

http://arxiv.org/abs/1310.8361
http://arxiv.org/abs/1310.8361
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Higgs and Flavor
In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable 

no tree-level Flavor Changing Current induced by the Higgs
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yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable 

no tree-level Flavor Changing Current induced by the Higgs

Not true anymore if the SM fermions mix with vector-like partners  or for non-SM Yukawa 
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(*) e.g. Buras, Grojean, Pokorski, Ziegler ’11 

(*) 

http://arXiv.org/abs/1105.3725
http://arXiv.org/abs/1105.3725


Christophe Grojean Higg Physics and Future Rehovot, Nov. 16 2o146

Higgs and Flavor
In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable 

no tree-level Flavor Changing Current induced by the Higgs

Not true anymore if the SM fermions mix with vector-like partners  or for non-SM Yukawa 

yij

✓
1 + cij

|H|2

f2

◆
f̄LiHfRj =

yijvp
2

✓
1 + cij

v2

2f2

◆
f̄LifRj +

✓
1 + 3cij

v2

2f2

◆
yijp
2
hf̄LifRj

(*) e.g. Buras, Grojean, Pokorski, Ziegler ’11 

(*) 

Look for SM forbidden Flavor Violating decays h → μτ and t→hc

weak indirect constrained by flavor data (e.g. μ→ eγ): BR<10%
ATLAS and CMS have the sensitivity to set bounds O(1%)
ILC/CLIC/FCC-ee can certainly do much better 

 Blankenburg, Ellis, Isidori ’12

Harnik et al ’12
Davidson, Verdier ’12

CMS-PAS-HIG-2014-005

http://arXiv.org/abs/1105.3725
http://arXiv.org/abs/1105.3725
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://arXiv.org/abs/1211.1248
http://arXiv.org/abs/1211.1248
http://arXiv.org/abs/1209.1397
http://arXiv.org/abs/1209.1397
http://arXiv.org/abs/1202.5704
http://arXiv.org/abs/1202.5704
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Figure 6: Constraints on the flavor violating Yukawa couplings, |Yµt|, |Ytµ|. The expected (red
solid line) and observed (black solid line) limits are derived from the limit on B(H ! µt) from
the present analysis. The diagonal Yukawa couplings are approximated by their SM values.
The black dashed lines are contours of B(H ! µt) for reference. The shaded regions are
derived constraints from null searches for t ! 3µ (dark green) and t ! µg (lighter green).
The orange diagonal line is the theoretical naturalness limit YijYji  mimj/v2. The yellow line
is the limit from a reinterpretation, by a theoretical group [8], of an ATLAS H ! tt search.

Off-diagonal Higgs couplings can reveal the origin of flavor
The interesting models of flavor (Yij≈√(mimj/v2)) start being probed by the experimental data

CMS-PAS-HIG-2014-005

by the way:
2.3σ excess!

http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
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1

Precision program in single Higgs processes
(assuming a mass gap between weak scale and new physics scale) 
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Higgs/BSM Primaries

e.g.

G G

1

g2s
G2

µ⌫ +
|H|2

⇤2
G2

µ⌫ !
✓

1

g2s
+

v2

⇤2

◆
G2

µ⌫

Effects that on the vacuum, H = v, give only !
a redefinition of the SM couplings:

⨂ ⨂

G G
Not physical!

But can affect h physics:

G G

⨂h
affects GG →h!
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operator
is not visible in 

the vacuum
(redefinition of input parameter)

Several deformations away from the SM are harmless in the vacuum 
and need a Higgs field to be probed

see A
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Higgs/BSM Primaries

(f=t,b,!)

htt, hbb, h!!

GGh coupling

hγγ coupling

hVV*

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and
gauge bosons, OWB = g0gH†�aHW a

µ⌫B
µ⌫ and OWW = g2|H|2W a

µ⌫W
µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths
and then their corresponding coe�cients should scale as c

3W ⇠ g2/g2⇤ and c
3G ⇠ g2s/g

2

⇤ respec-
tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to
begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,
that when needed the Hermitian conjugate of a given operator is included in the analysis. In
the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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|H|2|DµH|2

|H|6

|H|2f̄LHfR + h.c.

How many of these effects can we have? 

 As many as parameters in the SM: 8
(assuming CP-conservation)

g

g0

mW
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mh

mf

(custodial invariant)

for one family

hZγ coupling

h3 coupling
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Pomarol, Riva ’13
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Gupta, Pomarol, Riva  ’14
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Higgs/BSM Primaries

(f=t,b,!)

htt, hbb, h!!

GGh coupling

hγγ coupling

hVV*

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and
gauge bosons, OWB = g0gH†�aHW a

µ⌫B
µ⌫ and OWW = g2|H|2W a

µ⌫W
µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths
and then their corresponding coe�cients should scale as c

3W ⇠ g2/g2⇤ and c
3G ⇠ g2s/g

2

⇤ respec-
tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to
begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,
that when needed the Hermitian conjugate of a given operator is included in the analysis. In
the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.

5

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and
gauge bosons, OWB = g0gH†�aHW a

µ⌫B
µ⌫ and OWW = g2|H|2W a

µ⌫W
µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths
and then their corresponding coe�cients should scale as c

3W ⇠ g2/g2⇤ and c
3G ⇠ g2s/g

2

⇤ respec-
tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to
begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�
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|H|2|DµH|2

|H|6

|H|2f̄LHfR + h.c.

How many of these effects can we have? 

 As many as parameters in the SM: 8
(assuming CP-conservation)

g

g0

mW

gs

mh

mf

(custodial invariant)

for one family
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h3 coupling
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yet to be measured
at the LHC

Pomarol, Riva ’13
Elias-Miro et al  ’13

Gupta, Pomarol, Riva  ’14

the 6 others have been measured (~15%) up to a flat direction 
between between the top/gluon/photon couplings
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GGh coupling
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µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
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µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,
that when needed the Hermitian conjugate of a given operator is included in the analysis. In
the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
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yet to be measured
at the LHC

Pomarol, Riva ’13
Elias-Miro et al  ’13

Gupta, Pomarol, Riva  ’14

the 6 others have been measured (~15%) up to a flat direction 
between between the top/gluon/photon couplings

Almost a 1-to-1 correspondence
with the 8 κ‘s in the Higgs fit

Coupling!fit!I!
• VH(>bb!included!in!ATLAS!
• Comparable!numbers!for!κW,κZ,!κt,!and!κγ!between!the!experiments!
• Couplings!can!be!determined!with!2(7%!precision!at!3000Z(1!!for!CMS!
Scenario!2!

!

10/17/14! 6!

ATLAS!ProjecDon!

Atlas projection

With some important differences:
1) width approximation built-in

2) κW/κZ is not a primary 
(constrained by Δρ and TGC)

3) κg, κγ, κZγ do not separate UV and IR 
contributions

http://indico.lal.in2p3.fr/event/2288/session/10/contribution/31/material/slides/0.pdf
http://indico.lal.in2p3.fr/event/2288/session/10/contribution/31/material/slides/0.pdf
http://arxiv.org/abs/arXiv:1308.2803
http://arxiv.org/abs/arXiv:1308.2803
http://arxiv.org/abs/arXiv:1308.1879
http://arxiv.org/abs/arXiv:1308.1879
http://arxiv.org/abs/arXiv:1405.0181
http://arxiv.org/abs/arXiv:1405.0181
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Don’t forget LEP!
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Don’t forget LEP!
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EW fit: 
0.98  a2  1.12

Ciuchini et al ’13
see also Grojean et al ’13

Elias-Miro et al ’13

The LEP indirect constraints on the other 
BSM primaries are not competitive

/ Nuclear Physics B Proceedings Supplement 00 (2014) 1–7 5

68% 95%
V 1.025 ± 0.021 [0.985, 1.069]

Table 7: Fit results for the scale factor V at 68% and 95% probabili-
ties.
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Figure 4: Left: Probability distribution for the scale factor V . Right:
Two-dimensional probability distributions for V and ⇤. The dark and
light regions correspond to 68% and 95% probabilities, respectively.

4. Constraints on the Higgs-boson couplings from
the Higgs-boson and electroweak precision data

In this section we fit the Higgs-boson couplings to
the data for the Higgs-boson signal strengths and the
EWPO, where the former are taken from Refs. [31, 53]
for H ! ��, Refs. [54, 55] for H ! ZZ, Refs. [56, 57]
for H ! W+W�, Refs. [58, 59] for H ! ⌧+⌧�, and
Refs. [60–64] for H ! bb̄ (see also Ref. [65]). We
consider the scale factors V and  f for the Higgs-boson
couplings to the EW vector bosons and to fermions, re-
spectively, and do not introduce new couplings that are
absent in the SM. For the SM loop-induced couplings
(Hgg, H��, and HZ�) we assume that there is no contri-
bution from new particles in the loop. For the relations
between the scale factors and the Higgs-boson signal
strengths, we refer the reader to Ref. [66].

In Table 8 we summarize the fit results for V and  f

from the Higgs-boson signal strengths. Note that the-
oretical predictions are symmetric under the exchange
{V ,  f } $ {�V , � f }. In the left plot in Fig. 5, we
present two-dimensional probability distributions for V
and  f at 68%, 95%, 99%, and 99.9%, where only the
parameter space with positive V is presented. The re-
gion with negative  f is disfavored in the fit. The right
plot in Fig. 5 shows constraints from the individual de-
cay channels. The constraints from H ! bb̄ are weaker
than that from H ! ⌧+⌧� and are not presented for sim-
plicity. It is noted that because of the presence of flat
directions in the fit, the detailed shapes of the individual
constraints depend on the choice of the allowed ranges
of the scale factors. We also consider constraints from
the EWPO with the formulae in Eqs. (7) and (8), which
are valid under the assumptions given above Eq. (6). As

68% 95% Correlations
V 1.02 ± 0.05 [0.93, 1.11] 1.00
 f 0.97 ± 0.11 [0.76, 1.20] 0.22 1.00

Table 8: SM-like solution in the fit of V and  f to the Higgs-boson
signal strengths.

Vκ
0.6 0.8 1 1.2

f
κ

-1

0

1

Vκ
0 0.5 1 1.5 2

f
κ

-2

-1

0

1

2
all
γγ
WW
ZZ
ττ

Figure 5: Left: Two-dimensional probability distributions for V and
 f at 68%, 95%, 99%, and 99.9% (darker to lighter), obtained from
the fit to the Higgs-boson signal strengths. Right: Constraints from
individual channels at 95%.

68% 95% Correlations
V 1.02 ± 0.02 [0.99, 1.06] 1.00
 f 0.97 ± 0.11 [0.77, 1.20] 0.10 1.00

Table 9: Same as Table 8, but considering both the Higgs-boson signal
strengths and the EWPO.

Vκ
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Figure 6: Two-dimensional probability distributions for V and  f at
68% (the dark region) and 95% (the light region), obtained from the
fit to the Higgs-boson signal strengths and the EWPO.

shown in Table 9 and Fig. 6, the constraint on V from
the EWPO is stronger than that from the Higgs-boson
signal strengths.

Next we consider the case where the coupling to
W+W�, parameterized by W , can di↵er from that to
ZZ, parameterized by Z . Note that theoretical predic-
tions are symmetric under the exchanges {W ,  f } $
{�W , � f } and/or Z $ �Z , where Z can flip the sign
independent of W , since the interference between the
W and Z contributions to the vector-boson fusion cross
section is negligible. Hence we consider only the pa-
rameter space where both W and Z are positive. Here
we do not consider the EWPO, since W , Z develops

Ciuchini et al ’13

http://arxiv.org/abs/arXiv:0706.0432
http://arxiv.org/abs/arXiv:0706.0432
http://arxiv.org/abs/arXiv:1312.2928
http://arxiv.org/abs/arXiv:1312.2928
http://arxiv.org/abs/1306.4655
http://arxiv.org/abs/1306.4655
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
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Anomalous hVV couplings (a≠1) is associated to the dimension-6 operator 

1 E↵ective Lagrangian for a light Higgs doublet

The most general Lagrangian for a weak doublet H at the level of dimension-6 operators was

first classified in a systematic way by Buchmuller and Wyler [4]. Subsequent analyses [5]

pointed out the presence of some redundant operators, and a minimal and complete list of

operators was finally provided in Ref. [6]. As recently discussed in Ref. [7], a convenient

basis of operators relevant for Higgs physics is the following:

�L = �LB + �LF (1.1)
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(ūR�µuR)

�

H† !D µH
�

+
ic̄Hd

v2

�

d̄R�µdR

� �

H† !D µH
�

+
ic̄Hud

v2
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(1.3)

where v = 246 GeV, yu,d,l and the c̄i in eq.(1.3) are matrices in flavor space and a sum over

flavors has been left understood. Similarly to Ref. [7], we will denote as Oi the operator

whose coe�cient is proportional to c̄i.

2

(@µ|H|2)2

h

W

W
W

W

h

W

W

h
h

Figure 1: One-loop diagrams contributing to h ! V V that feature the e↵ective vertex h(@µ�)2

implied by the dimension-6 operator OH . Their logarithmic divergence is associated to the running

of c̄W + c̄B and c̄HW + c̄HB, see text. The symbol ⌦ denotes the insertion of the e↵ective vertex.

will mix among each others. At leading order in the SM coupling ↵ (and in the number of

e↵ective vertices insertions), one has
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✓
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ij

↵

8⇡
log

✓

µ2

M2

◆◆

c̄j(M) , (3.28)

where �(0)
ij is the leading-order coe�cient of the anomalous dimension. As usual, for µ⌧M

one can resum terms (↵ log(M/µ))n at all orders n by solving the renormalization group

equation for the ci.

In general, one-loop EW corrections mix all the operators of eqs.() except those with

gluon field strengths. In the case of a strongly-interacting Higgs, g⇤ � g, the leading e↵ects

– although with a few exceptions which we mention below – come from loops of only NG

and Higgs bosons. In this limit the (transversely polarized) gauge fields can be considered

as external classical sources, while the Yukawa couplings can be set to zero. This drastically

simplifies the matrix of anomalous dimensions, since there are only three operators which

mix among each other: OH , OW+B ⌘ OW + OB and OHW+HB ⌘ OHW + OHB. We find:

�(0)
ij =

0

B

B

@

0 0 0

1/12 0 0

?? 0 0

1

C

C

A

, i, j = H, (W + B), (HW + HB) . (3.29)

The only non-vanishing elements are those corresponding to a renormalization of c̄W + c̄B

and c̄HW + c̄BH due to c̄H . Considering for example the process h ! V V , the relevant

one-loop diagrams are shown in Fig. 1. From the estimates c̄H(M) ⇠ (v2/f 2), c̄W,B(M) ⇠
O(m2

W /M2), see eq.(1.4), it follows that in the case of c̄W+B the RG evolution down to

15

it RG-mixes with other operators contributing to EW oblique parameters

with
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Particularly relevant to bound the operators “poorly constrained” at tree-level
through their mixing with operators “strongly constrained” at tree-level
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Figure 1: The blue ellipses represent the 68% (solid), 95% (dashed) and 99% (dotted) CL bounds

on Ŝ and T̂ as obtained in the fit of Ref. [30] with U = 0. The straight lines represent the RG-

induced contribution to the oblique parameters from the weakly constrained observable couplings

of Eq. (4.21), divided in Higgs couplings (a) and TGC couplings (b), using the first two lines of

Eq. (4.22). The length of the lines corresponds to their present 95% CL direct bounds, see Table 3;

the line is green (red) for positive (negative) values of the parameters.

or of the same order of, the direct tree-level constraint. We also obtain RG-induced bounds
from the direct constraint on ĉ�� using the fifth line in Eq. (4.22) and Eq. (4.10),

ĉ� 2 [�0.3, 0.2] ,

ĉ�� 2 [�0.10, 0.05] ,
(4.23)

but at present these bounds are weaker than those from the direct bounds on electroweak
parameters.

Let us briefly comment on alternate choices for our observable basis. A change of ob-
servable basis will in general modify the anomalous dimension matrix of Table 5, also for
the observables which were maintained in the basis. Thus, the RG-induced constraints we
have derived, are applicable only to our particular choice of observables, and for an alternate
choice the analysis must be repeated.10 For instance, the Higgs decay observables such as
h ! W+W�, ZZ could have been alternatively chosen as part of our observable basis instead
of two of the TGC observables (� and gZ) but we have kept the TGC in our basis as they

10Note that for our choice of observable basis, h ! �� does not receive a contribution from the Ŝ parameter

even though there is a dependance on cWB in the anomalous dimension since cWB is actually reconstructing

the �� parameter.

16

The blue ellipses represent the 68% (solid), 95% (dashed) and 99% (dotted) CL bounds on S and T. 
The straight lines represent the RG-induced contribution to the oblique parameters 

from the weakly constrained observable couplings, divided in Higgs couplings (a) and TGC couplings (b). 
The length of the lines corresponds to their present 95% CL direct bounds.
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Quantity Physics Present Measured Statistical Systematic Key Challenge

precision from uncertainty uncertainty

mZ (keV) Input 91187500± 2100 Z Line shape scan 5 (6) < 100 Ebeam calibration QED corrections

ΓZ (keV) ∆ρ (not ∆αhad) 2495200± 2300 Z Line shape scan 8 (10) < 100 Ebeam calibration QED corrections

R! αs, δb 20.767± 0.025 Z Peak 0.00010 (12) < 0.001 Statistics QED corrections

Nν PMNS Unitarity, . . . 2.984± 0.008 Z Peak 0.00008 (10) < 0.004 Bhabha scat.

Nν . . . and sterile ν’s 2.92± 0.05 Zγ, 161GeV 0.0010 (12) < 0.001 Statistics

Rb δb 0.21629± 0.00066 Z Peak 0.000003 (4) < 0.000060 Statistics, small IP Hemisphere correlations

ALR ∆ρ, ε3, ∆αhad 0.1514± 0.0022 Z peak, polarized 0.000015 (18) < 0.000015 4 bunch scheme, 2exp Design experiment

mW (MeV) ∆ρ , ε3, ε2, ∆αhad 80385± 15 WW threshold scan 0.3 (0.4) < 0.5 Ebeam, Statistics QED corrections

mtop (MeV) Input 173200± 900 tt̄ threshold scan 10 (12) < 10 Statistics Theory interpretation

Table 9. Selected set of precision measurements at TLEP. The statistical errors have been determined with (i) a one-year scan of the Z resonance
with 50% data at the peak, leading to 7× 1011 Z visible decays, with resonant depolarization of single bunches for energy calibration at O(20min)
intervals; (ii) one year at the Z peak with 40% longitudinally-polarized beams and a luminosity reduced to 20% of the nominal luminosity; (iii) a
one-year scan of the WW threshold (around 161GeV), with resonant depolarization of single bunches for energy calibration at O(20min) intervals;
and (iv) a five-years scan of the tt̄ threshold (around 346GeV). The statistical errors expected with two detectors instead of four are indicated
between brackets. The systematic uncertainties indicated below are only a “first look” estimate and will be revisited in the course of the design study.
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EW/Higgs data: the TLEP improvement 
LEP: 106 Z’s ➠ TLEP: 1012 Z’s

1 order of magnitude in TGC
1-2 orders of magnitude in Higgs couplings

can probe tuning/correlations 
between various contributions 
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O(20-30) improvement in EW oblique parameters measurement
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CP violation in Higgs physics?

Can the 0+ SM Higgs boson have CP violating couplings?

Is CP a good symmetry of Nature?  2 CP-violating couplings in the SM: 
VCKM (large, O(1)), but screened by small quark masses) and θQCD (small, O(10-10))

Among the 59 irrelevant directions, 6 CP Higgs/BSM primaries6 BSM primary effects:

(f=b, !, t)�LBSM = i�g̃hff hf̄LfR + h.c.

+̃GG
h
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CP-violating Higgs couplings
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3

⇠ hFF̃ �

h

S

FIG. 1. Left: the diagram that gives rise to fermionic EDMs via the insertion of the operator hF F̃ from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model involving a VL lepton,  , coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this contribution is proportional to the mixing term, A, in the scalar
potential.

of ỸS , ✓, and m :

df = d(2l)f ⇥Q2

 ỸS
v

m 
sin(2✓)

⇥
g(m2

 /m
2

h) � g(m2

 /m
2

S)
⇤
,

(13)
where the loop function is given by

g(z) =
z

2

Z
1

0

dx
1

x(1 � x) � z
ln

✓
x(1 � x)

z

◆
, (14)

which satisfies g(1) ⇠ 1.17 and g ⇠ 1

2

ln z for large z. We
show the Feynman diagram responsible for this contribu-
tion on the right of Fig. 1.

It is instructive to consider di↵erent limits of
(13). When mh ⌧ m ,mS , to logarithmic accuracy
g(m2

 /m
2

h) � g(m2

 /m
2

S) ! 1

2

ln(m2

min

/m2

h), where m
min

is the smaller of mS and m . In this limit, the heavy
fields can be integrated out sequentially, with S and  
first, and h second. The first step is simplified by the
use of the chiral anomaly equation for  , @µ ̄�µ�5 =
2i ̄�

5

 + ↵
8⇡Q

2

 Fµ⌫ F̃µ⌫ . This leads to the following iden-
tification:

c̃h

⇤̃2

=
↵Q2

 

4⇡

ỸSA

m2

Sm 
; ⇤

UV

' min(mS ,m ). (15)

Apart from a smaller value for the logarithmic cuto↵,
the result in this limit di↵ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min

/m2

h) ⇠ O(1), the corrections to
the Higgs diphoton rate will be limited to at most the
sub-percent level unless a fine-tuned cancellation of de is
arranged with some other CP -odd source.

We now consider a di↵erent near-degenerate limit,
|mh � mS | ⌧ mh, which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di↵erence between the masses is small, we can ap-
proximate

sin(2✓)(m2

S � m2

h) ! 2Av, (16)

and the EDM becomes

df = d(2l)f ⇥ Q2

 ỸS
2Av2m 

m4

h

g0(m2

 /m
2

h) (17)

�! d(2l)f ⇥ Q2

 ỸS
Av2

m2

hm 
, (18)

where in the final step we made use of the large m limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting between h
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/(m2

hm ) in the O(10�2 � 10�3) range,
suppressing the EDM safely below the bound.
At the same time, as explicitly shown in Ref. [5], mod-

ifications to the h ! �� rate can be significant, and
enhancement can come from the Fµ⌫ F̃µ⌫ amplitude. Un-
like corrections to the Fµ⌫Fµ⌫ amplitudes that can en-
hance or suppress the e↵ective rate, the CP -odd chan-
nel always adds to R�� . Assuming that the mass di↵er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS � mh| ⇠< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is

Re↵

��(ỸS) = cos2 ✓ ⇥ Brh!��

BrSMh!��

+ sin2 ✓ ⇥ BrS!��

BrSMh!��

. (19)

If ✓ is in the range
s

�
ˆS!��

�
ˆh!��

BrSMh!�� ⇠< ✓ ⇠<
s

�
ˆh!��

�
ˆS!��

(20)

and �
ˆh!�� ⇠ �

ˆS!�� then R�� simplifies to a ✓-
independent expression,

Re↵

��(ỸS) ' 1 +
�

ˆS!��

�
ˆh!��

. (21)

The rate for the weak eigenstate Ŝ to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is

�
ˆS!�� =

↵2Q4

 Ỹ
2

s m
3

S

256⇡3m2

 

����A
P
1/2

✓
m2

S

4m 

◆����
2

, (22)

operators with γ: 
already severely constrained 

by e and q EDMs
McKeen, Pospelov, Ritz ’12 ΛCP > 25 TeV

̃�� ⇠ ̃�Z  10�4

operators with top: 
already severely constrained 

by e and q EDMs
Brod, Haisch, Zupan ’13 ΛCP > 2.5 TeV

Constrained indirectly: one-loop impact on Electric Dipole 
Moments (EDM): 

e.g.  de < 8.7 10-29 e cm  (ACME 13)

too strong to compete!

CP-violating Higgs couplings

HEFT2013, Oct 10 2013J. Zupan     Constraints on CPV Higgs...

electron EDM
• dominant contribution from 

2-loop Barr-Zee type diagram

• depends on electron yukawa

• setting ye=1 is then quite constraining

• the constraint vanishes, if the Higgs does not couple to electrons 

• e.g. if it only couples to the 3rd gen.

7

exp

δghtt ≲ 0.01~

Brod,Haisch,Zupan 13

�g̃htt  0.01

Among the 59 irrelevant directions, 6 CP Higgs/BSM primaries6 BSM primary effects:

(f=b, !, t)�LBSM = i�g̃hff hf̄LfR + h.c.

+̃GG
h

v
Gµ⌫G̃µ⌫

+̃��
h

v
F � µ⌫ F̃ �

µ⌫

+̃�Z
h

v
F � µ⌫ F̃Z

µ⌫

F̃µ⌫ ⌘ ✏µ⌫⇢�F
⇢�(                            )

CP-violating Higgs couplings

Caveats: h couplings to light particles can be significantly reduced

e,q e,q
h

http://arxiv.org/abs/arXiv:1208.4597
http://arxiv.org/abs/arXiv:1208.4597
http://arxiv.org/abs/arXiv:1310.1385
http://arxiv.org/abs/arXiv:1310.1385
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Higgs Priorities
Better measurements of Higgs primaries

 in inclusive measurements
 in differential distributions

Going beyond the κ’s? What for?
 to compete with other (EW, TGC...) measurements?
 to check the correlations imposed by SM structure?

e.g. doublet nature of the Higgs, 
      accidental custodial symmetry @ dim-6 level

1

2



Christophe Grojean Higg Physics and Future Rehovot, Nov. 16 2o1417

Higgs Priorities
Better measurements of Higgs primaries

 in inclusive measurements
 in differential distributions

Going beyond the κ’s? What for?
 to compete with other (EW, TGC...) measurements?
 to check the correlations imposed by SM structure?

e.g. doublet nature of the Higgs, 
      accidental custodial symmetry @ dim-6 level
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~ fully establishing the SM will require checking correlations among different vertices ~  

0-Higgs vertices 1-Higgs vertices
(with and beyond the κ’s)

2-Higgs vertices

Higgs Regge’s plot is a prime example
Need to look at the correlations with TGC

test of the Ginzburg-Landau’s model
test of PGB nature of the Higgs
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 in inclusive measurements
 in differential distributions

Going beyond the κ’s? What for?
 to compete with other (EW, TGC...) measurements?
 to check the correlations imposed by SM structure?

e.g. doublet nature of the Higgs, 
      accidental custodial symmetry @ dim-6 level

1

2

Questions not fully addressed yet: 
what is the precision that you need in Higgs physics? 

will the LHC reach this required sensitivity? 

~ fully establishing the SM will require checking correlations among different vertices ~  

0-Higgs vertices 1-Higgs vertices
(with and beyond the κ’s)

2-Higgs vertices

Higgs Regge’s plot is a prime example
Need to look at the correlations with TGC

test of the Ginzburg-Landau’s model
test of PGB nature of the Higgs
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A
�
W a

LW
b
L � W c

LW
d
L

⇥
= A(s, t, u)�ab�cd +A(t, s, u)�ac�bd +A(u, t, s)�ad�bc A =

�
1� a2

⇥ s

v2
A
�
Z0
LZ

0
L ⇥ hh

⇥
= (W+

L W�
L ⇥ hh) =

�
b� a2

⇥ s

v2

if the Higgs is part of a doublet and custodial symmetry is at work

1� a2 ' �(b� a2)

a single operator of dimension-6 controls these 2 processes: 
cH
2f2

�
�µ |H|2

⇥2

a =
p

1� �

b = 1� 2�

� =
v2

f2

�b = 2�a2
�
1 +O(�a2)

�

20

In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)

At dimension-6 level:
�b ⌘ 1� b

�a2 ⌘ 1� a2

a dimension-8 operator controls the deviations to this universal relation 

WW ! hh

b
a

d3A(WW ! hh) ⇠ s

v2
(a2 � b)

a = 1� cH
2

v2

f2
+

✓
3c2H
8

� c0H
4

◆
v4

f4

b = 1� 2cH
v2

f2
+

✓
3c2H � 3c0H

2

◆
v4

f4
O0

H =
c0H
2f4

|H|2�µ|H|2�µ|H|2

OH =
cH
2f2

�µ|H|2�µ|H|2

19

A high-energy e+e- collider 
(such as CLIC 3TeV) can 

provide a clean environment to 
make precision studies of 

scattering amplitudes

Example:

[  RC , Grojean, Pappadopulo, 
   Rattazzi, Thamm,  to appear  ]

dim 6:

dim 8:

WW ! hh

b
a

d3A(WW ! hh) ⇠ s

v2
(a2 � b)

a = 1� cH
2

v2

f2
+

✓
3c2H
8

� c0H
4

◆
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A high-energy e+e- collider 
(such as CLIC 3TeV) can 

provide a clean environment to 
make precision studies of 

scattering amplitudes

Example:

[  RC , Grojean, Pappadopulo, 
   Rattazzi, Thamm,  to appear  ]

dim 6:

dim 8:

if the Higgs is a Goldstone 
then non-linear symmetry relates operators of different dimensions

Example of Correlation 1-H & 2-H vertices
Contino, Grojean, Pappadopoulo, Rattazzi, Thamm ’13

http://arxiv.org/abs/arXiv:1309.7038
http://arxiv.org/abs/arXiv:1309.7038
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a =
p

1� �

b = 1� 2�

� =
v2

f2

�b = 2�a2
�
1 +O(�a2)

�

�a2⇠�b ⇠ 10%

Exp. precision ⇠ 1%

�a2

�b
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In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)

At dimension-6 level:

Scenario 1:
size of dim-8 
corrections

PN
GB

dilaton

Test dim-8 
operators

1.  PNGB (and specific coset) proved

2.  SILH proved, PNGB disproved

�b ⌘ 1� b

�a2 ⌘ 1� a2

10% deviations are observed

the corrections to the universal relation 
between ‘a’ and ‘b’ are O(1%)

can distinguish a PNGB from
 a non PNGB resonance
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Test dim-8 
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�b ⌘ 1� b

�a2 ⌘ 1� a2Contino, Grojean, Pappadopoulo, Rattazzi, Thamm ’13
Example of Correlation 1-H & 2-H vertices

http://arxiv.org/abs/arXiv:1309.7038
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In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)

At dimension-6 level:

Scenario 2:

1.  SILH proved

2.  SILH (i.e. Higgs doublet) disproved

�b ⌘ 1� b

�a2 ⌘ 1� a2

�a2

�b
size of dim-8 
corrections

PN
GB

dilaton

1% deviations are observed

the corrections to the universal relation are 
beyond any future sensitivity
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In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)

At dimension-6 level:

Scenario 2:

1.  SILH proved

2.  SILH (i.e. Higgs doublet) disproved

�b ⌘ 1� b

�a2 ⌘ 1� a2

�a2

�b
size of dim-8 
corrections

PN
GB

dilaton

can distinguish a doublet from 
a non-doublet resonance

Contino, Grojean, Pappadopoulo, Rattazzi, Thamm ’13
Example of Correlation 1-H & 2-H vertices

http://arxiv.org/abs/arXiv:1309.7038
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Boosted and off-shell Higgs channels  
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Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell 
in processes with a characteristic scale µ ≈ mH 
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So far the LHC has mostly produced Higgses on-shell 
in processes with a characteristic scale µ ≈ mH 

access to Higgs couplings @ mH 
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See also, e.g., Bechtle, Heinemeyer, Stal, Stefaniak & Weiglein (14)
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See also, e.g., Bechtle, Heinemeyer, Stal, Stefaniak & Weiglein (14)Ciuchini et al ’13Ciuchini et al ’13

http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1306.4644
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Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell 
in processes with a characteristic scale µ ≈ mH 

Producing a Higgs with boosted additional particle(s)
probe the Higgs couplings @ large energy

(important to check that the Higgs boson ensures perturbative unitarity)

access to Higgs couplings @ mH 

on-shell Z @ LEP1 off-shell Z @ LEP2

constraints on 
S and T oblique corrections

constraints on 
W and Y oblique corrections

(same order as S and T but cannot be probed @ LEP1)

Probing new corrections to the SM Lagrangian?

But... off-shell Higgs data do not probe new corrections 
that cannot be constrained by on-shell data
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Boosted Higgs
  inability to resolve the top loops

 the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels
 the unbearable lightness: loops saturate and don’t reveal the physics @ energy physics (*)

contribution, evaluated in the large-mt approximation, and we normalize it with the exact mt-
dependent Born cross section, σLO(mt). More precisely, we multiply the O(α4

S) contributions by
the ratio σLO(mt)/σLO(mt → ∞).

2.1 Numerical results

We have implemented the exact heavy-quark mass dependence in a new version of the numerical
code HNNLO. The program HNNLO is a parton level event generator that allows the user to compute
the Higgs production cross section and the associated distributions up to NNLO in QCD perturba-
tion theory, and to apply arbitrary infrared-safe cuts on the Higgs decay products and the recoiling
QCD radiation. The program includes the H → γγ, H → WW → lνlν and H → ZZ → 4l decay
modes.

In the following, we present only a limited sample of the numerical results that can be obtained
with our program. We consider Higgs boson production in pp collisions at

√
s = 8 TeV and we

use the MSTW2008 sets of parton distributions [44], with densities and αS evaluated at each
corresponding order (i.e., we use (n + 1)-loop αS at NnLO). Unless stated otherwise, we set the
renormalization and factorization scales to the Higgs boson mass, µR = µF = mH , and we set
mt = 172.5 GeV and mb = 4.75 GeV.

The first quantity that is important to test with the modified program is the inclusive cross
section. In Table 1 we study the impact of heavy-quark masses at NLO. We report the NLO cross
sections evaluated with the exact top and bottom mass dependence, normalized to the NLO result
in the large-mt limit.

mH(GeV) σNLO(mt)
σNLO(mt→∞)

σNLO(mt,mb)
σNLO(mt→∞)

125 1.061 0.988
150 1.093 1.028
200 1.185 1.134

Table 1: Impact of the heavy-quark masses on the inclusive NLO cross sections. All results are
normalized to the mt → ∞ result.

From Table 1 we see that the mass effects change the cross section at the few percent level,
and that the bottom contribution decreases the cross section by a few percent. This effect is
well known, and it is due to the negative interference with the top-quark contribution. We have
compared our results with those obtained with the numerical program HIGLU [5, 7] and found very
good agreement.

We now move to consider the impact of mass effects on the pT cross section. Such effects have
been studied at NLO in earlier works [45, 46, 47, 13, 48, 49].

In Fig. 1 (left panel) we plot the pT spectrum of the Higgs boson at NLO with full dependence
on the masses of the top and bottom quarks and we compare it with the corresponding result in
which only the top-quark contribution is considered. Both results are normalized to the result
obtained in the large-mt limit. To better emphasize the impact of the bottom quark, in the right

4

e.g. Grazzini, Sargsyan ’13 

the inclusive rate
doesn’t “see” the finite mass of the top 

(*) unless it doesn’t decouple 
(e.g. 4th generation)

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1306.4581
http://arXiv.org/abs/1306.4581
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corresponding order (i.e., we use (n + 1)-loop αS at NnLO). Unless stated otherwise, we set the
renormalization and factorization scales to the Higgs boson mass, µR = µF = mH , and we set
mt = 172.5 GeV and mb = 4.75 GeV.

The first quantity that is important to test with the modified program is the inclusive cross
section. In Table 1 we study the impact of heavy-quark masses at NLO. We report the NLO cross
sections evaluated with the exact top and bottom mass dependence, normalized to the NLO result
in the large-mt limit.

mH(GeV) σNLO(mt)
σNLO(mt→∞)

σNLO(mt,mb)
σNLO(mt→∞)

125 1.061 0.988
150 1.093 1.028
200 1.185 1.134

Table 1: Impact of the heavy-quark masses on the inclusive NLO cross sections. All results are
normalized to the mt → ∞ result.

From Table 1 we see that the mass effects change the cross section at the few percent level,
and that the bottom contribution decreases the cross section by a few percent. This effect is
well known, and it is due to the negative interference with the top-quark contribution. We have
compared our results with those obtained with the numerical program HIGLU [5, 7] and found very
good agreement.

We now move to consider the impact of mass effects on the pT cross section. Such effects have
been studied at NLO in earlier works [45, 46, 47, 13, 48, 49].

In Fig. 1 (left panel) we plot the pT spectrum of the Higgs boson at NLO with full dependence
on the masses of the top and bottom quarks and we compare it with the corresponding result in
which only the top-quark contribution is considered. Both results are normalized to the result
obtained in the large-mt limit. To better emphasize the impact of the bottom quark, in the right
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panel of Fig. 1 we show the full NLO result normalized to the result obtained neglecting the
bottom quark.

We see that, when only the top contribution is considered, the cross section at low pT is larger
than the corresponding cross section in the large-mt limit. In this region the recoiling parton is soft
and/or collinear, and the differential cross section factorizes into a universal factor times the Born
level contribution. The limit of the solid and dashed histograms in the left panel of Fig. 1 thus
correspond to the ratios σLO(mt, mb)/σLO(mt → ∞) = 0.949 and σLO(mt)/σLO(mt → ∞) = 1.066,
respectively.

The results in Fig. 1 show that the impact of the bottom quark is important, especially in the
low-pT region, since it substantially deforms the shape of the spectrum. At large pT values, the
impact of the bottom quark becomes small and the differential cross section quickly departs from
its value in the large-mt limit. This is a well known feature of the large-mt approximation: at
large pT the parton recoiling against the Higgs boson is sensitive to the heavy-quark loop, and the
large-mt approximation breaks down.

Another feature that is evident from Fig. 1 is that the qualitative behaviour of the results is
rather different. When considering the NLO result with only the top quark included, in a wide
region of transverse momenta the shape of the spectrum is rather stable and in rough agreement
with what is obtained in the large-mt approximation. This is not the case when the bottom
contribution is included: the shape of the spectrum quickly changes in the small- and intermediate-
pT region and the spectrum becomes harder. We will come back to this point in Sec. 3.1.

Figure 1: Transverse momentum distribution for a SM Higgs with mH = 125 GeV computed
at NLO. Left: result normalized to the large-mt approximation. Right: normalized to the mt-
dependent result.

The mass effects in differential NLO distributions were previously discussed in Ref. [13]. We
have compared our results with those of Ref. [13] and found agreement.
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We see that, when only the top contribution is considered, the cross section at low pT is larger
than the corresponding cross section in the large-mt limit. In this region the recoiling parton is soft
and/or collinear, and the differential cross section factorizes into a universal factor times the Born
level contribution. The limit of the solid and dashed histograms in the left panel of Fig. 1 thus
correspond to the ratios σLO(mt, mb)/σLO(mt → ∞) = 0.949 and σLO(mt)/σLO(mt → ∞) = 1.066,
respectively.

The results in Fig. 1 show that the impact of the bottom quark is important, especially in the
low-pT region, since it substantially deforms the shape of the spectrum. At large pT values, the
impact of the bottom quark becomes small and the differential cross section quickly departs from
its value in the large-mt limit. This is a well known feature of the large-mt approximation: at
large pT the parton recoiling against the Higgs boson is sensitive to the heavy-quark loop, and the
large-mt approximation breaks down.

Another feature that is evident from Fig. 1 is that the qualitative behaviour of the results is
rather different. When considering the NLO result with only the top quark included, in a wide
region of transverse momenta the shape of the spectrum is rather stable and in rough agreement
with what is obtained in the large-mt approximation. This is not the case when the bottom
contribution is included: the shape of the spectrum quickly changes in the small- and intermediate-
pT region and the spectrum becomes harder. We will come back to this point in Sec. 3.1.

Figure 1: Transverse momentum distribution for a SM Higgs with mH = 125 GeV computed
at NLO. Left: result normalized to the large-mt approximation. Right: normalized to the mt-
dependent result.

The mass effects in differential NLO distributions were previously discussed in Ref. [13]. We
have compared our results with those of Ref. [13] and found agreement.
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p
s [TeV] pmin

T [GeV] �SM

pmin
T

[fb] � ✏ gg, qg [%]

14

100 2200 0.016 0.023 67, 31

150 830 0.069 0.13 66, 32

200 350 0.20 0.31 65, 34

250 160 0.39 0.56 63, 36

300 75 0.61 0.89 61, 38

350 38 0.86 1.3 58, 41

400 20 1.1 1.8 56, 43

450 11 1.4 2.3 54, 45

500 6.3 1.7 2.9 52, 47

550 3.7 2.0 3.6 50, 49

600 2.2 2.3 4.4 48, 51

650 1.4 2.6 5.2 46, 53

700 0.87 3.0 6.2 45, 54

750 0.56 3.3 7.2 43, 56

800 0.37 3.7 8.4 42, 57

100
500 970 1.8 3.1 72, 28

2000 1.0 14 78 56, 43

Table 1: Summary table of the cross sections for pp ! hj at proton-proton colliders with
p
s = 14TeV and

p
s = 100TeV. The third, fourth and fifth column show, for the given cut

on pT > pmin

T , the parameters of the semi-numerical formula in Eq. (2.4). The last column

shows the fraction of the SM cross section coming from the partonic subprocesses gg and qg.

The contribution of the qq̄ channel is always smaller than 2%.
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respectively.
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its value in the large-mt limit. This is a well known feature of the large-mt approximation: at
large pT the parton recoiling against the Higgs boson is sensitive to the heavy-quark loop, and the
large-mt approximation breaks down.
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with what is obtained in the large-mt approximation. This is not the case when the bottom
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Figure 1: Transverse momentum distribution for a SM Higgs with mH = 125 GeV computed
at NLO. Left: result normalized to the large-mt approximation. Right: normalized to the mt-
dependent result.

The mass effects in differential NLO distributions were previously discussed in Ref. [13]. We
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Composite Higgs Model
top partners contributions

inclusive rate: O(%)

with high-pT cut: O(x10’%)

high-pT tail “sees” the top partners that are missed by the inclusive rate
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see also Azatov, Paul ’13 
see also Banfi, Martin, Sanz ’13 
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http://arxiv.org/abs/hep-ph/0604156
http://arxiv.org/abs/hep-ph/0604156
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Boosted Higgs
high pT tail discriminates short and long distance physics contribution to gg ➙ h

Are the NLOm QCD corrections (not known) going to destroy all the sensitivity?
Frontier priority: N3LO∞ for inclusive xs or NLOmt for pT spectrum?

competitive/complementary to htt channel to measure the top-Higgs coupling
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Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.11) for

di↵erent choices of the actual parameters 0

t and 0

g, or equivalently of µ0

incl

and R0. The

colors blue, red and black correspond to 0

t = 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0

t ,
p
µ0

incl

� 0

t ). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R L dt = 3 ab�1

and
p
s = 14TeV.
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Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.11) for

di↵erent choices of the actual parameters 0

t and 0

g, or equivalently of µ0

incl

and R0. The

colors blue, red and black correspond to 0

t = 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0

t ,
p

µ0

incl

� 0

t ). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R L dt = 3 ab�1

and
p
s = 14TeV.
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(partonic analysis in the boosted “ditau-jets” channel)

10-20% precision on κt

see Schlaffer et al ’14 for a more complete analysis including WW channel 
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Off-shell Higgs
Off-shell Higgs effects 

naively small since the width is small (ΓH=4MeV, ΓH/mH =3x10-5) for a 125 GeV Higgs
but enhancement due to the particular couplings of H to VL
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Off-shell Higgs
Off-shell Higgs effects 

naively small since the width is small (ΓH=4MeV, ΓH/mH =3x10-5) for a 125 GeV Higgs
but enhancement due to the particular couplings of H to VL

N.#De#Filippis! A,er#the#discovery,#Benasque,#Spain,#April#07>17,#2014# 4 

Constraint'on'the'ΓH'from'H*(126)"ZZ'
F.#Caola,#K.#Melnikov#(Phys.#Rev.#D88#(2013)#054024)#and##
J.#Campbell#et#al.#(arXiv:1311.3589)##
showed#how#this#feature#can#be#turned#into#a#constraint'on'the'total'Higgs'width''

Once#µ#is#fixed#a#determinaOon#of#r#is#obtained#and#so#for#ΓH#:##

The#interference#with#conOnuum#gg#→#ZZ#is#taken#into#account#at#high#mass##"##gg2VV/MCFM'
VBF#producOon#is#10%#at#high#mass#"#PHANTOM#

µ#from#CMS#4l#paper#arXiv:1312.5333#
#and#provide#result#in#two#ways:#

�µ#expected”:#use#expected#signal#strength##

�µ#observed”:#use#observed#signal#strength##

FF>'so'measuring'the'raTo'of'σoffFpeak'and'σonFpeak'"'measurement'of'ΓH'

Recent analysis of gg→H*→ZZ→4l 
(about 15% of the Higgs events are far off-shell with m4l>300GeV)

CMS PAS HIG-14-002 
ATLAS-CONF-2014-042  

http://cds.cern.ch/record/1740973/files/ATLAS-COM-CONF-2014-052.pdf
http://cds.cern.ch/record/1740973/files/ATLAS-COM-CONF-2014-052.pdf
http://arxiv.org/abs/1405.3455
http://arxiv.org/abs/1405.3455
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Off-shell Higgs
Off-shell Higgs effects 

naively small since the width is small (ΓH=4MeV, ΓH/mH =3x10-5) for a 125 GeV Higgs
but enhancement due to the particular couplings of H to VL

Narrow width approximation for Higgs boson
How can it fail? 


ΓH / MH=1/30,000

!

It fails spectacularly for      
gg→H→ZZ(*)→e-e+μ-μ+.

!

At least 15% of the cross section 
comes from m4l>130GeV.

!

3 phenomena happening in the 
tail.

Similar tail for H→WW.
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c t

g

g

Z

Z
g

g
Z

Z

c g

g

g

Z

Z

Figure 1: Sample diagrams contributing to gg ! ZZ.

Notice that, given our normalization, the parameterization of new physics e↵ects in terms

of an EFT expansion is meaningful only if the Wilson coe�cients satisfy

ci ⌧ 1 . (2.3)

After electroweak symmetry breaking Eq. (2.2) leads to the Lagrangian

L = �ct
mt

v
t̄th+

g2s
48⇡2

cg
h

v
Gµ⌫G

µ⌫ , (2.4)

where ct = 1� Re(cy) and we have ignored CP -odd contributions. It is well known (see for

instance Refs. [16,17]) that the current measurements of the Higgs couplings have a strongly

degenerate solution along the line ct + cg = constant, which originates from the Higgs low-

energy theorem: because on-shell Higgs production occurs at the scale mh < mt, its cross

section is proportional to

� ⇠ |ct + cg|2 . (2.5)

However, once we go to the far o↵-shell region, the partonic center-of mass energy of the

process
p
ŝ becomes higher than mt , so that we cannot integrate out the top anymore

and Eq. (2.5) becomes invalid. Therefore comparing the measurements of the on-shell and

o↵-shell Higgs production provides a way to disentangle the e↵ects of the ct, cg couplings.

Fig. 1 shows the diagrams contributing to the gg ! ZZ process, whose amplitude can be

schematically written as

Mgg!ZZ = Mh +Mbkg = ctMct + cgMcg +Mbkg , (2.6)

where Mh stands for the Higgs mediated diagram, and Mbkg stands for the interfering

background, given by the box diagrams on the Fig. 1. Notice that in addition to the
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Access to the Higgs width @ LHC?

Narrow Width Approx.: on-shell off-shell
ratios of κ only

no direct access to the width itself
upper bound if κV < 1 is assumed 

different width dependence 
ΓH can be fitted w/o assumption

often said, it is impossible to measure the Higgs width at the LHC. Not quite true.
it can be done either via off-shell measurements or via the mass shift in gg➝h➝γγ
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Figure 1: Sample diagrams contributing to gg ! ZZ.

Notice that, given our normalization, the parameterization of new physics e↵ects in terms

of an EFT expansion is meaningful only if the Wilson coe�cients satisfy

ci ⌧ 1 . (2.3)

After electroweak symmetry breaking Eq. (2.2) leads to the Lagrangian

L = �ct
mt

v
t̄th+

g2s
48⇡2

cg
h

v
Gµ⌫G

µ⌫ , (2.4)

where ct = 1� Re(cy) and we have ignored CP -odd contributions. It is well known (see for

instance Refs. [16,17]) that the current measurements of the Higgs couplings have a strongly

degenerate solution along the line ct + cg = constant, which originates from the Higgs low-

energy theorem: because on-shell Higgs production occurs at the scale mh < mt, its cross

section is proportional to

� ⇠ |ct + cg|2 . (2.5)

However, once we go to the far o↵-shell region, the partonic center-of mass energy of the

process
p
ŝ becomes higher than mt , so that we cannot integrate out the top anymore

and Eq. (2.5) becomes invalid. Therefore comparing the measurements of the on-shell and

o↵-shell Higgs production provides a way to disentangle the e↵ects of the ct, cg couplings.

Fig. 1 shows the diagrams contributing to the gg ! ZZ process, whose amplitude can be

schematically written as

Mgg!ZZ = Mh +Mbkg = ctMct + cgMcg +Mbkg , (2.6)

where Mh stands for the Higgs mediated diagram, and Mbkg stands for the interfering

background, given by the box diagrams on the Fig. 1. Notice that in addition to the

5

interfering gg ! ZZ background there is also a non-interfering irreducible background,

produced by the qq̄ ! ZZ process.The SM amplitude for gg ! ZZ was computed for the

first time in Ref. [22]. As pointed out in Ref. [23], the o↵-shell Higgs contribution is enhanced

for on-shell Z bosons, which makes the large
p
ŝ � 2mZ region particularly relevant for Higgs

couplings measurements. It is interesting to observe that the amplitude generated by the cg

coupling grows with partonic center-of-mass energy
p
ŝ like

M++00
cg ⇠ ŝ , (2.7)

to be compared to the triangle amplitude mediated by the top loop, which grows like

M++00
ct ⇠ log

ŝ

m2
t

, (2.8)

in the notation for helicity amplitudes of Ref. [22].4 Thus for ŝ � m2
t the discriminating

power of the o↵-shell Higgs production becomes stronger. However, at very high energies

the EFT approximation breaks down and the dimension-8 operators become as important

as the dimension-6 ones. For example, let us consider the operator

O8 =
c8g2s

16⇡2v4
Gµ⌫G

µ⌫ (D�H)† D�H . (2.9)

The matrix element corresponding to the final state with two longitudinally polarized Z

bosons grows with energy as

M++00
c8 ⇠ ŝ2. (2.10)

Then the interference of O8 with the SM amplitude will become of the same order as the

interference of the dimension-6 operators with the SM at the scale

p
ŝ ⇠

r
cg, cy
c8

v . (2.11)

Therefore, our analysis, based on Eq. (2.2), is valid only up to this scale and it would not

make sense to consider bins at higher energy in the analysis. Furthermore, when squaring

4Even though the amplitude for the Higgs-mediated diagram in Eq. (2.8) is logarithmically divergent at

large ŝ, in the SM unitarity is preserved thanks to the exact cancellation of the divergence against the box

diagram contribution [22,24].
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Notice that, given our normalization, the parameterization of new physics e↵ects in terms

of an EFT expansion is meaningful only if the Wilson coe�cients satisfy

ci ⌧ 1 . (2.3)
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L = �ct
mt

v
t̄th+

g2s
48⇡2

cg
h

v
Gµ⌫G

µ⌫ , (2.4)

where ct = 1� Re(cy) and we have ignored CP -odd contributions. It is well known (see for

instance Refs. [16,17]) that the current measurements of the Higgs couplings have a strongly

degenerate solution along the line ct + cg = constant, which originates from the Higgs low-

energy theorem: because on-shell Higgs production occurs at the scale mh < mt, its cross

section is proportional to

� ⇠ |ct + cg|2 . (2.5)

However, once we go to the far o↵-shell region, the partonic center-of mass energy of the

process
p
ŝ becomes higher than mt , so that we cannot integrate out the top anymore

and Eq. (2.5) becomes invalid. Therefore comparing the measurements of the on-shell and

o↵-shell Higgs production provides a way to disentangle the e↵ects of the ct, cg couplings.

Fig. 1 shows the diagrams contributing to the gg ! ZZ process, whose amplitude can be

schematically written as

Mgg!ZZ = Mh +Mbkg = ctMct + cgMcg +Mbkg , (2.6)

where Mh stands for the Higgs mediated diagram, and Mbkg stands for the interfering

background, given by the box diagrams on the Fig. 1. Notice that in addition to the
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Notice that, given our normalization, the parameterization of new physics e↵ects in terms

of an EFT expansion is meaningful only if the Wilson coe�cients satisfy

ci ⌧ 1 . (2.3)
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where ct = 1� Re(cy) and we have ignored CP -odd contributions. It is well known (see for

instance Refs. [16,17]) that the current measurements of the Higgs couplings have a strongly

degenerate solution along the line ct + cg = constant, which originates from the Higgs low-

energy theorem: because on-shell Higgs production occurs at the scale mh < mt, its cross

section is proportional to

� ⇠ |ct + cg|2 . (2.5)

However, once we go to the far o↵-shell region, the partonic center-of mass energy of the

process
p
ŝ becomes higher than mt , so that we cannot integrate out the top anymore

and Eq. (2.5) becomes invalid. Therefore comparing the measurements of the on-shell and

o↵-shell Higgs production provides a way to disentangle the e↵ects of the ct, cg couplings.

Fig. 1 shows the diagrams contributing to the gg ! ZZ process, whose amplitude can be

schematically written as

Mgg!ZZ = Mh +Mbkg = ctMct + cgMcg +Mbkg , (2.6)

where Mh stands for the Higgs mediated diagram, and Mbkg stands for the interfering

background, given by the box diagrams on the Fig. 1. Notice that in addition to the

5

interfering gg ! ZZ background there is also a non-interfering irreducible background,

produced by the qq̄ ! ZZ process.The SM amplitude for gg ! ZZ was computed for the

first time in Ref. [22]. As pointed out in Ref. [23], the o↵-shell Higgs contribution is enhanced

for on-shell Z bosons, which makes the large
p
ŝ � 2mZ region particularly relevant for Higgs

couplings measurements. It is interesting to observe that the amplitude generated by the cg

coupling grows with partonic center-of-mass energy
p
ŝ like

M++00
cg ⇠ ŝ , (2.7)

to be compared to the triangle amplitude mediated by the top loop, which grows like

M++00
ct ⇠ log

ŝ

m2
t

, (2.8)

in the notation for helicity amplitudes of Ref. [22].4 Thus for ŝ � m2
t the discriminating

power of the o↵-shell Higgs production becomes stronger. However, at very high energies

the EFT approximation breaks down and the dimension-8 operators become as important

as the dimension-6 ones. For example, let us consider the operator

O8 =
c8g2s

16⇡2v4
Gµ⌫G

µ⌫ (D�H)† D�H . (2.9)

The matrix element corresponding to the final state with two longitudinally polarized Z

bosons grows with energy as

M++00
c8 ⇠ ŝ2. (2.10)

Then the interference of O8 with the SM amplitude will become of the same order as the

interference of the dimension-6 operators with the SM at the scale

p
ŝ ⇠

r
cg, cy
c8

v . (2.11)

Therefore, our analysis, based on Eq. (2.2), is valid only up to this scale and it would not

make sense to consider bins at higher energy in the analysis. Furthermore, when squaring

4Even though the amplitude for the Higgs-mediated diagram in Eq. (2.8) is logarithmically divergent at

large ŝ, in the SM unitarity is preserved thanks to the exact cancellation of the divergence against the box

diagram contribution [22,24].
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Figure 5: Prospects for a 14TeV analysis with an integrated luminosity of 3 ab�1 and for the

injected SM signal: expected posterior probability as a function of ct, assuming the constraint

ct + cg = 1 and to observe the SM signal. The black curve corresponds to the nonlinear

analysis including all bins, at 68% probability we find ct 2 [0.74, 1.28]. The red curve was

obtained using only the categories below 600GeV and at 68% we have ct 2 [0.1, 1.25] The

brown curve corresponds to the linear analysis including all bins, which gives ct 2 [0.36, 1.66]

at 68%.

a dimension-8 operator. We can estimate the Wilson coe�cients of the dimension-6 and

dimension-8 operators in Eqs. (2.2) and (2.9) as

cg = cy ⇠ Y 2
⇤ v2

M2
⇤
,

c8 ⇠ Y 2
⇤ v4

M4
⇤
. (3.22)

This implies that the dimension-8 operators will become important at the scale

p
s ⇠ M⇤ , (3.23)

where our analysis breaks down.9 Therefore to remain in the region of validity of the EFT

approach, when deriving the bounds on the model parameter space we only considered the

9 As a side comment, we note that an exact treatment of the gg ! ZZ amplitude in this model requires

the computation of box diagrams with two di↵erent massive fermions in the loop. These diagrams are

exactly the same as those for the SM contribution to the gg ! WW process, mediated by top and bottom

quarks [50]. Within this work, however, we chose to remain within the EFT approach and leave the analysis

of the e↵ects of the dimension-8 operators for future study.
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all bins

bins < 600 GeV
14 TeV
3/ab

0.74 1.28

linear w/all bins

0.1 1.25
0.36 1.66

provides an alternative to ttH to measure the top Yukawa coupling

Azatov, Grojean, Paul, Salvioni ’14

http://cds.cern.ch/record/1740973/files/ATLAS-COM-CONF-2014-052.pdf
http://cds.cern.ch/record/1740973/files/ATLAS-COM-CONF-2014-052.pdf
http://arxiv.org/abs/1405.3455
http://arxiv.org/abs/1405.3455
http://arxiv.org/abs/1406.6338
http://arxiv.org/abs/1406.6338
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Rare H production modes

P.Torrielli, MadGraph5-aMC@NLO

Which opportunities for new 
measurements and probes of Higgs 

properties are made possible by 
these new channels ?

HH
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Rare H production modes

P.Torrielli, MadGraph5-aMC@NLO

Which opportunities for new 
measurements and probes of Higgs 

properties are made possible by 
these new channels ?
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A long term plan?

x 1000

x 100-1000

FCC = H+X factory

(Plots from P. Torrielli and MLM, CERN’14)

https://indico.cern.ch/event/304759/contribution/35/material/slides/0.pdf
https://indico.cern.ch/event/304759/contribution/35/material/slides/0.pdf
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Producing one Higgs is good. Producing more Higgses is better

Multi Higgs processes

Patrick Janot 

Higgs%Physics%with%(V)HECLHC%
!  What’s%new%at%higher%energy%?%

◆  The%Higgs%cross%sections%increase%substantially%

●  HECLHC%would%do%like%1%ab-1 of%HLCLHC%for%HVV,%Hbb,%Hγγ,%Hgg%and%Hbb%
➨  But%about%the%same%as%HLCLHC%on%Htt%and%HHH%

●  VHECLHC%would%do%like%6%ab-1 of%HLCLHC%for%HVV,%Hbb,%Hγγ,%Hgg%and%Hbb%
➨  But%much%better%on%Htt%(2%)%and%HHH%(10%)%

◆  Possibly%a%whole%lot%of%new%physics%becomes%accessible%
●  The%larger%the%energy,%the%better%

14 Nov 2012 
HF2012 : Higgs beyond LHC (Experiments) 

31 

[18] 

The two difficult processes @ LHC (tth and hh) are the real winners of the energy boost
(these 2 processes have to do with the top Yukawa coupling

one of the most promising probe of new physics)
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What do we learn from gg→HH?
𝒄𝒕 

𝒄𝒕 

𝒄𝟐 

𝒅𝟑 

𝒄𝒕 

𝒄𝒈𝒈 𝒄𝒈 𝒅𝟑 

Six parameters are involved 
What’s  the  connection  of  these  pars.  to  NP?   

𝑔𝑔 → ℎℎ process 

: How do we systematically study the effects of those pars ? 

in principle gg→HH gives access to many new couplings, including non-linear couplings

In practice, if the Higgs is part of an EW doublet, 
these new couplings are related to single-Higgs couplings

cgg = cgc2t = 3(ct � 1)

Example of connection between 1-Higgs and 2-Higgs vertices
Important to measure independently these vertices 

and check the relations imposed by structure/symmetries/dynamics of the theory
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Example of connection between 1-Higgs and 2-Higgs vertices
Important to measure independently these vertices 

and check the relations imposed by structure/symmetries/dynamics of the theory

Evolution of  
c3 and c2t under 14 TeV → 100 TeV  

Preliminary 300  fb  

3000  fb  

3000  fb  Azatov, Contino, Panico, Son  ‘to appear

SM

see also Goertz, Papaefstathiou, Yang, Zurita ’14

Remarks:
• unique access to c3 but sensitivity is limited (within the validity of EFT?). 
• statistically limited, with more luminosity 

➾ access to distribution
➾ discriminating power c3 vs. c2t vs cg

http://arxiv.org/abs/arXiv:1410.3471
http://arxiv.org/abs/arXiv:1410.3471
http://indico.cern.ch/event/304759/contribution/29/material/slides/0.pdf
http://indico.cern.ch/event/304759/contribution/29/material/slides/0.pdf
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What do we learn from gg→HH?
in principle gg→HH gives access to many new couplings, including non-linear couplings

after marginalizing over c3, HH channel provides additional infos on single Higgs couplings

Sensitivity @ 14 TeV, using 300/fb 

Preliminary 

Double h 
Single h fit 
without tth 

tth 

Azatov, Contino, Panico, Son  ‘to appear

Sensitivity @ 14 TeV, using 3000/fb 

Preliminary 

HH channel is useful to break the degeneracy 
between 2 minima in the fit of single Higgs processes

http://indico.cern.ch/event/304759/contribution/29/material/slides/0.pdf
http://indico.cern.ch/event/304759/contribution/29/material/slides/0.pdf
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Multiple Higgs interactions in WW→HH

asymptotic behavior
sensitive to strong interaction
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in the SM, the Higgs is essential to prevent strong interactions in EWSB sector
(e.g. WW scattering) 
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http://arxiv.org/abs/arXiv:1002.1011
http://arxiv.org/abs/arXiv:1002.1011
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�C3

2b2�

4b

 In the 4b final state, 14 TeV with 300 fb-1 

(3000 fb-1) the hhVV coupling can be 
measured with good precision: ~25-30% 
(10-15%)

 As expected, the precision on the Higgs 
trilinear coupling is worse than in gg->hh 
(since backgrounds dominate hh threshold 
region)

 At the FCC, the hhVV coupling can be 
pinned down with very high, few percent 
precision

 We have included a 50% error in the 
backgrounds, to account for theory and 
experimental uncertainties

 Encouraging to begin to explore Higgs 
pair-production in VBF already at the LHC 
Run II

PRELIMINARY
LHC 14 TeV 300 fb-1

LHC 14 TeV 3 ab-1

FCC 100 TeV 
3 ab-1

�C3

�C2V

Bondu, Contino, Massironi, Rojo ‘to appear

http://arxiv.org/abs/arXiv:1002.1011
http://arxiv.org/abs/arXiv:1002.1011
https://indico.cern.ch/event/313725/session/1/contribution/19/1/material/slides/0.pdf
https://indico.cern.ch/event/313725/session/1/contribution/19/1/material/slides/0.pdf
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Conclusions: Higgs & New Physics 
Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Christophe Grojean Effective Higgs Zurich, 7th.Jan. 2o1311

Effective Higgs

typical mass scale
M = g* f

NP
EW scale v=246GeV

g, g’, yt

SM

g2  /g*
SM

effective approach valid iff
mass gap: M >> gSM v

weakly coupled NP strongly coupled NP

MSSM in the decoupling limit composite Higgs models

in both cases, Higgs couples to NP with g*

g* ~ gSM g* >> gSM

 Precision Higgs study: 

 Direct searches for resonances:

Composite Higgs : Reach 
Complementary approaches to probe composite Higgs models 
•  Direct search for heavy resonances at the LHC 
•  Indirect search via Higgs couplings at the ILC 
Note: the two approaches cannot be directly compared since the spectra of 
the heavy resonances are heavily model-dependent.  Higgs couplings provide 
a model-independent probe of Higgs compositeness. 

Mass (TeV)
0 1 2 3 4

vector-like quark
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 nice complementarity 
between direct searches 
and precision Higgs physics
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a deviation in Higgs couplings also teaches us on the maximum mass scale to search for!
e.g. 10% deviation ➾ mV < 10TeV i.e. resonance within the reach of FCC-hh
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 large region of parameter 
space already disfavored by 
EW precision data

 complementarity between 
direct searches @ hadron 
machine and indirect higgs  
measurements @ lepton 
machine
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