

#### Alex Pomarol, UAB (Barcelona)



### The most important oschiese here en en the statt he late the late of the Higgs



Don't panic! It's not a Tecni-Higgs, It looks a lot the SM Higgs (at least in a first approximation)



### The SM is established!

### But the hierarchy problem still lingering... demanding TeV new-physics that doesn't show up!

Not necessary should follow the "accidents" of the SM

B violations: Proton decay  $A \gtrsim 10^{15} \text{ GeV}$ L violation: Larger neutrino masses  $A \gtrsim 10^{15} \text{ GeV}$ Flavor violations  $A \gtrsim 10^5 \text{ TeV}$ CP violation: EDMs  $A \gtrsim 10 \text{ TeV}$ 

Not necessary should follow the "accidents" of the SM

**B** violations: Proton decay → Λ≥10<sup>15</sup> GeV L violation: Larger neutrino masses  $\rightarrow \Lambda \gtrsim 10^{15} \text{ GeV}$ Flavor violations  $\rightarrow \Lambda \gtrsim 10^5 \text{ TeV}$ (e cm) Simplified model with maximal CP 10<sup>-22</sup> phase **EDMs** 10 ► Λ≥ I0 TeV Own quark Ef 10 Neutron EDM bound 10<sup>-28</sup> Electron EDM bound -1 ) 10<sup>1</sup> 10<sup>2</sup> 1  $\tilde{e}_R$ MSUSY (TeV)  $\stackrel{\text{(J. Hisano Moriond 14)}}{\bar{R}}$ 

Not necessary should follow the "accidents" of the SM

we are **forced** to demand these symmetries to *natural* BSM B violations: Proton decay  $A \gtrsim 10^{15} \text{ GeV}$ L violation: Larger neutrino masses  $A \gtrsim 10^{15} \text{ GeV}$ Flavor violations  $A \gtrsim 10^5 \text{ TeV}$ CP violation: EDMs

► Λ≳I0 TeV

But no sign of BSM effects in  $\sim$  millions of Z:



But no sign of BSM effects in  $\sim$  millions of Z:





But no sign of BSM effects in  $\sim$  millions of Z:





**Expected from strongly-coupled BSM:** 

$$\hat{\mathbf{T}} \sim O(1) \text{ effects}$$
$$\hat{\mathbf{S}} \sim (m_W/\Lambda)^2 \sim 0.01$$

T could be made small by symmetries (custodial) but no S

touching the "BSM's bones"

But no sign of BSM effects in  $\sim$  millions of Z:





**Expected from strongly-coupled BSM:** 

$$\hat{\mathbf{T}} \sim O(1)$$
 effects  
 $\hat{\mathbf{S}} \sim (m_W/\Lambda)^2 \sim 0.01$ 

T could be made small by symmetries (custodial) but no S

touching the "BSM's bones"

But "one swallow doesn't make a spring"

#### LEP: First important place for *natural* theories to show up But no sign of BSM effects in $\sim$ millions of Z: Z 0.01 In the supersymmetric SM: 0.009 0.008 stops 0.007 Ζ $\widehat{T}$ 0.006 0.00 mн ~ 100 GeV Higgsless $\hat{T} \sim O(10^{-2})$ (a la QCD) 0.004 X 0.003 mн ~ I TeV stop mass > 300 GeV 0.003 0.004 0.005 0.006 0.007 0.008

### LHC: Second important place for natural theories to show up

the Higgs discovery has provided a new

"handle" to catch BSMs



With the **Higgs**, we have had access to new relevant information by measuring its **properties** 



The Higgs is usually the most "sensitive" SM particle to new-physics **Examples:** 



**Examples:** 



**Consequences:** 

### Even with less statistics at the LHC, similar impact today in new-physics as LEP

LEP: ee  $\rightarrow$  Z ( $\rightarrow$ ff) ~ 10<sup>6</sup> event LHC: pp $\rightarrow$ h ( $\rightarrow$ YY) ~ 10<sup>3</sup> events First question to answer:

# What are the most relevant Higgs couplings to measure? Higgs physic:

EW obs.

probes testing new directions in the "parameter space" of BSMs

### Model independent analysis

Assuming a large new-physics scale:  $\Lambda > m_W$  (as LHC suggests)



give the leading deviations to SM Higgs physics from BSM

Only <u>8 Higgs couplings</u> (assuming CP-conservation and family universality)
 can be modified by new-physics, not affecting anything else

Coming from dimension-6 operators whose effects on the vacuum, H = v, give only a redefinition of the SM couplings:





Not physical!

But can affect **Higgs** physics:



### There are 8 operators of this type

for one family (assuming CP-conservation)



(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \frac{\delta g_{hff}}{\delta f_L f_R} h \bar{f}_L f_R + h.c. \qquad (f=b, \tau, t) \\ + \frac{g_{hVV}}{g_{hVV}} h \left[ W^{+\mu} W^{-}_{\mu} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ + \frac{\kappa_{GG}}{v} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ + \frac{\kappa_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^{\gamma}_{\mu\nu} \\ + \frac{\kappa_{\gamma Z}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^{Z}_{\mu\nu} \\ + \frac{\delta g_{3h}}{v} h^3$$

(assuming CP-conservation)

$$\begin{split} \Delta \mathcal{L}_{\text{BSM}} &= \delta g_{hff} h \bar{f}_L f_R + h.c. \quad (\mathbf{f}=\mathbf{b}, \tau, \mathbf{t}) \\ &+ g_{hVV} h \left[ W^{+\,\mu} W^{-}_{\mu} + \frac{1}{2 \cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ &+ \kappa_{GG} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ &+ \kappa_{\gamma\gamma} \frac{h}{v} F^{\gamma\,\mu\nu} F^{\gamma}_{\mu\nu} \quad \text{important:} \\ &+ \kappa_{\gamma Z} \frac{h}{v} F^{\gamma\,\mu\nu} F^{Z}_{\mu\nu} \\ &+ \delta g_{3h} h^3 \end{split}$$

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \begin{cases} \delta g_{hff} h \bar{f}_L f_R + h.c. & (f=b, \tau, t) \\ + g_{hVV} h \left[ W^{+\mu} W_{\mu}^{-} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ + \kappa_{GG} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ + \kappa_{\gamma\gamma} \frac{h}{v} F^{\gamma \mu\nu} F_{\mu\nu}^{\gamma} \\ + \kappa_{\gamma Z} \frac{h}{v} F^{\gamma \mu\nu} F_{\mu\nu}^{Z} \\ + \delta g_{3h} h^3 \end{cases}$$

6

### Higgs coupling determination



All parameters floating and  $\kappa_v \leq 1$ 

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \delta g_{hff} h \bar{f}_L f_R + h.c. \qquad (f=b, \tau, t)$$
6 measured  
at the LHC
$$+ g_{hVV} h \left[ W^{+\mu} W_{\mu}^{-} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right]$$

$$+ \kappa_{GG} \frac{h}{v} G^{\mu\nu} G_{\mu\nu}$$

$$+ \kappa_{\gamma\gamma} \frac{h}{v} F^{\gamma \mu\nu} F_{\mu\nu}^{\gamma}$$

$$+ \kappa_{\gammaZ} \frac{h}{v} F^{\gamma \mu\nu} F_{\mu\nu}^{Z} \qquad h \rightarrow Z\gamma$$

$$+ \delta g_{3h} h^3 \qquad \text{Affects h}^3:$$
It can be measured  
in the far future by  
GG \rightarrow hh

### Experimental bound on $h \rightarrow Z\gamma$



... last hope for finding O(I) deviations?

BR( $h \rightarrow Z\gamma$ )~0.001 small in the SM since it comes at one-loop:

### **Prospects for 3h-coupling**



from G.Panico's talk at "BSM Higgs Workshop@LPC" Natural expectations for primary Higgs couplings



### MSSM with heavy spectrum ( >100 GeV)

Main effects from the **2nd Higgs doublet:** 



Superpartners can only modify Higgs couplings at the loop-level: Only stops/sbottoms give some contribution to hgg/hYY (not very large)

### Relevant plane for susy Higgs couplings:



### Relevant plane for susy Higgs couplings:



### Relevant plane for susy Higgs couplings:

![](_page_32_Figure_1.jpeg)

from arXiv:1212.524

(data before Moriond 13)

## Higgs coupling measurements are already ruling out susy-parameter space

![](_page_33_Figure_1.jpeg)

## Higgs coupling measurements are already ruling out susy-parameter space

![](_page_34_Figure_1.jpeg)

### **Composite Higgs**

### **Composite PGB Higgs couplings**

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

Giudice, Grojean, AP, Rattazzi 07

$$\frac{g_{hWW}}{g_{hWW}^{\rm SM}} = \sqrt{1 - \frac{v^2}{f^2}}$$

f = Decay-constant of the PGB Higgs
 related to the compositeness scale
(model dependent but expected f ~ v)

### **Composite PGB Higgs couplings**

Couplings dictated by symmetries (as in the QCD chiral Lagrangian) Giudice, Grojean, AP, Rattazzi 07 Untitled-1  ${\mathcal M}$ model dependent but expected  $f \sim v$ ) 1000 1500 sh Also affects the Z propagator, whose properties were **►**  $\xi = (v/f)^2 ≤ 0.1$ well-measured at LEP or, equivalently:  $\delta g_{hWW}$  $\lesssim 5\%$ 

### **Composite PGB Higgs couplings**

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

 $\frac{g_{hWW}}{g_{hWW}^{\rm SM}} = \sqrt{1 - \frac{v^2}{f^2}} \qquad \begin{array}{c} f = \\ f = \\ re \end{array}$ 

f = Decay-constant of the PGB Higgs
related to the compositeness scale
(model dependent but expected f ~ v)

Giudice, Grojean, AP, Rattazzi 07

AP,Riva 12

small deviations on the  $h\gamma\gamma(gg)$ -coupling due to the Goldstone nature of the Higgs

![](_page_39_Figure_0.jpeg)

observed (expected) 95% CL upper limit of  $\xi < 0.12 (0.29)$  MCHM4  $\xi < 0.15 (0.20)$  MCHM5

![](_page_40_Figure_0.jpeg)

"mass term"-

Corrections to  $hZ\gamma$ -coupling <u>not</u> protected by the PGB symmetry

Corrections to  $h\gamma\gamma(gg)$ -coupling protected by the PGB symmetry

 $|H|^2 G^A_{\mu\nu} G^{A\mu\nu}$ 

 $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu
u}$ 

![](_page_41_Figure_0.jpeg)

Corrections to  $hZ\gamma$ -coupling <u>not</u> protected by the PGB symmetry

Corrections to  $h\gamma\gamma(gg)$ -coupling protected by the PGB symmetry

### "mass term"-

 $|H|^2 G^A_{\mu\nu} G^{A\mu\nu}$ 

 $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu
u}$ 

A.Azatov, R.Contino, A.DiIura, J.Galloway 13

Going beyond the MSSM and MCHM

### Towards a more extended "cartography" of natural BSMs PGB

Composite Higgs

> Elementary Higgs (SUSY)

#### Towards a more extended "cartography" of natural **BSMs** PGB

Composite Higgs Mostly unexplored territory Susy + TeV Strong dynamics

motivated to keep naturalness

in the absence of superpartners below TeV

and mh~125 GeV (hard susy-breaking effects?)

**Elementary Higgs** 

(SUSY)

### **Possibilities:**

1) Strong-sector with accidental ("emergent") supersymmetry delivering a composite-susy light Higgs ( $m_h \ll \Lambda \sim \text{TeV}$ )

T.Gherghetta, AP 03, R. Sundrum 04, M.Redi, B.Gripaios 10

2) MSSM Higgs coupled to a TeV strong-sector breaking susy (SBS):

$$g_i \int d^2 \theta \ H_i \mathcal{O}_i$$

A. Azatov, J. Galloway and M. A. Luty 12

T. Gherghetta, AP 11

#### SBS could also break EWSB

similarity with Bosonic TC

M.Dine, A.Kagan, S. Samuel 90

3) Higgs as a dilaton: v=f<sub>dilat</sub> (associated to the breaking of scale invariance)

1) Strong-sector with "Emergent supersymmetry" delivering a composite-susy light Higgs ( $m_h \ll \Lambda$ )

➡ Modifications of Higgs couplings as in MCHM but also in hYY,hGG  $\sim \xi = (v/f)^2$ (since no shift-symmetry protecting)

#### 8 of 8

1) Strong-sector with "Emergent supersymmetry" delivering a composite-susy light Higgs ( $m_h \ll \Lambda$ )

➡ Modifications of Higgs couplings as in MCHM but also in hYY,hGG (since no shift-symmetry protecting)

8 of 8

> but  $\hat{T} < O(10^{-3})$ forces f > few TeV

2) MSSM Higgs coupled to a strong-sector breaking susy (SBS):

<u>Higgs mixing to the SBS:</u>  $\epsilon_H$ 

Correction with respect to the SM:

![](_page_48_Figure_3.jpeg)

 $\frac{\delta g_{h\gamma\gamma}}{g_{h\gamma\gamma}^{\rm SM}} \sim \epsilon_H^2 \xi$ 

 $\frac{\delta g_{3h}}{g_{3h}^{\rm SM}} \sim g_*^2 \epsilon_H^6 \xi \sim \epsilon_H^2 \xi$ 

 $(g_*^2 \epsilon_H^4 \sim \lambda_{\rm SM} \sim 1)$ 

 $\frac{\delta g_{hVV}}{g_{hVV}^{\rm SM}} \sim \epsilon_H^4 \xi$ 

#### 4) Higgs as a dilaton:

#### excitation along the EWSB condensate = scale-breaking condensate

#### $m_h {\ll} \Lambda {\, \sim \,} \text{TeV}$ since it is a dilaton

B.Bellazzini, C.Csaki, J.Hubisz, J.Serra, J.Terning 14 F.Coradeschi, P.Lodone, D.Pappadopulo, R.Rattazzi, L.Vitale 14 E.Megias, O.Pujolas 14

![](_page_49_Picture_4.jpeg)

 $rac{\delta g_{h\gamma\gamma}}{g_{h\gamma\gamma}^{
m SM}}$ 

extra contributions from the scale anomaly

![](_page_49_Figure_7.jpeg)

$$\frac{\delta g_{3h}}{g_{3h}^{\rm SM}} = \frac{5}{3}$$

#### **Expected** largest corrections to Higgs couplings:

|                       | hff          | hVV          | hγγ          | hγZ          | hGG          | h            |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| MSSM                  | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| NMSSM                 |              | $\checkmark$ | $\checkmark$ | √            | $\checkmark$ |              |
| PGB Composite         |              | $\checkmark$ |              | $\checkmark$ |              |              |
| SUSY Composite        |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| SUSY partly-composite |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| "Bosonic TC"          |              |              |              |              |              | $\checkmark$ |
| Higgs as a dilaton    |              |              |              | $\checkmark$ | $\checkmark$ |              |

### New Higgs decays also possible

TeV susy-breaking allows

#### Higgs as the superpartner of the neutrino

Fayet,'76; AP, Riva, Biggio'12

![](_page_52_Figure_3.jpeg)

Is the Higgs the first SUSY particle discovered?

### The Higgs could decay invisibly

![](_page_53_Figure_1.jpeg)

No sign of so, up to now:

 CMS:
 BR<sub>inv</sub> < 58% (44% expected)</th>

 ATLAS:
 BR<sub>inv</sub> < 75% (62% expected)</th>

### Relaxing the MFV condition: Flavor violation in Higgs decays $h \rightarrow f_1 f_2$

Interesting in models where the origin of fermion masses comes from mixing with a new sector

![](_page_54_Picture_2.jpeg)

Prediction:  $BR(h \rightarrow \tau \mu) \sim \frac{m_{\mu}}{m_{\tau}} BR(h \rightarrow \tau \tau) \sim 0.4\%$ 

![](_page_54_Figure_4.jpeg)

### **Beyond the primary Higgs couplings**

### **Beyond the primary Higgs couplings**

![](_page_56_Figure_1.jpeg)

### **Beyond the primary Higgs couplings**

![](_page_57_Figure_1.jpeg)

momentum-dependent hVV couplings

but beaten paths... (not independent from other couplings already tested)

![](_page_57_Picture_4.jpeg)

![](_page_58_Figure_0.jpeg)

Some modifications in  $h \rightarrow Zff$  related to  $Z \rightarrow ff$ Constrained by LEPI at the per-mille level! custodial breaking hVV

![](_page_59_Figure_1.jpeg)

All effects can be written as a function of contributions to other couplings:

$$\begin{split} \delta g_{ZZ}^{h} &= 2gm_{W}s_{\theta_{W}}^{2} \left( \delta g_{1}^{Z} - \frac{\delta \kappa_{\gamma}}{c_{\theta_{W}}^{2}} \right), \qquad \delta g_{ff'}^{W} = \frac{c_{\theta_{W}}}{\sqrt{2}} \left( \delta g_{ff}^{Z} V_{\text{CKM}} - V_{\text{CKM}} \delta g_{f'f'}^{Z} \right) \text{ for } f = f_{L} \\ g_{Zff}^{h} &= 2\delta g_{ff}^{Z} - 2\delta g_{1}^{Z} \left( g_{ff}^{Z} c_{2\theta_{W}} + g_{ff}^{\gamma} s_{2\theta_{W}} \right) + 2\delta \kappa_{\gamma} Y_{f} \frac{es_{\theta_{W}}}{c_{\theta_{W}}^{3}}, \qquad g_{Wff'}^{h} = 2\delta g_{ff'}^{W} - 2\delta g_{1}^{Z} g_{ff'}^{W} c_{\theta_{W}}^{2} \\ \kappa_{ZZ} &= \frac{1}{2c_{\theta_{W}}^{2}} \left( \delta \kappa_{\gamma} + \kappa_{Z\gamma} c_{2\theta_{W}} + 2\kappa_{\gamma\gamma} c_{\theta_{W}}^{2} \right), \qquad \kappa_{WW} = \delta \kappa_{\gamma} + \kappa_{Z\gamma} + 2\kappa_{\gamma\gamma} , \end{split}$$

 $\begin{cases} \delta g_{I}{}^{z}, \delta \kappa_{\gamma} : \text{ Corrections to TGC} \\ \delta g_{f}{}^{z} : \text{ Corrections to Zff} \\ \delta g^{h}{}_{vv} : \text{ Corrections to hVV} \\ \kappa_{Z\gamma}, \kappa_{\gamma\gamma} : \text{ Corrections to hZ\gamma & h\gamma\gamma} \end{cases}$ 

custodial breaking hVV

![](_page_60_Figure_1.jpeg)

#### **<u>BUT</u>** worth to explore. Some interesting physical effects in:

VH associated production

![](_page_61_Figure_2.jpeg)

#### **<u>BUT</u>** worth to explore. Some interesting physical effects in:

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_62_Figure_3.jpeg)

### Conclusions

With the Higgs III the SM is completed

No need for anything else (at least) up to around the Planck scale

... but very unnatural theory!

![](_page_63_Picture_4.jpeg)

Natural models demand departures from SM Higgs couplings:

 Today, as Higgs coupling measurements agree with the SM, we only place bounds on new-physics

The Higgs is another weapon of BSM destruction

• Tomorrow, who knows, it can illuminate on new-physics

![](_page_63_Picture_9.jpeg)