

Alex Pomarol, UAB (Barcelona)

The most important achievement at the Latist Thay Higgs ! Go from "seen" to O(%) measurements. 19.7 fb⁻¹ (8 TeV) + 5.1 fb¹ (7 TeV) **CMS** SM Higgs Preliminary prediction \mathbf{r} **● 。 。 。** Higgs coupling Higgs coupling $W₂$ $-68%$ CL -95% CL \bullet generic scalar --SM Higgs 10^{-1} prediction ● **。** 10^{-2} (M, ε) fit 68% CL 95% CL 2 3 4 5 100 200 20 10 mass (GeV)

➥**Don't panic!** It's not a *Tecni-Higgs*, It looks a lot the **SM Higgs** (at least in a first approximation)

The SM is established !

But the hierarchy problem still lingering… demanding TeV new-physics that doesn't show up!

Not necessary should follow the "**accidents**" of the SM

B violations: Proton decay $ightharpoonup \Lambda \geq 10^{15}$ GeV **L** violation: Larger neutrino masses $ightharpoonup \Lambda \geq 10^{15}$ GeV **Flavor** violations \rightarrow $\Lambda \geq 10^5$ TeV **CP** violation: EDMs \rightarrow $\Lambda \geq 10$ TeV

Not necessary should follow the "**accidents**" of the SM

B violations: Proton decay $ightharpoonup \Lambda \geq 10^{15}$ GeV **L** violation: Larger neutrino masses \rightarrow $\Lambda \geq 10^{15}$ GeV **Flavor** violations \mathbf{S} Supersymmetric \mathbf{S} (e cm) simplified model
with maximal CP
10⁻²² phase Simplified model $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ with maximal CP with maximal CP $\begin{array}{ccc} \hline \end{array}$ $\begin{array}{ccc} 10^{-22} & \text{phase} & \end{array}$ phase EDMs $\frac{1}{2}$ and $\frac{24}{2}$ $\sim \triangle$ 10 TeV **HOWN d** $\frac{d}{d\theta}$ tan i Neutron EDM bound electrop. *^dd/e ^d^c* μ ⁻²⁸ tan Electron EDM bound $\frac{1}{\sqrt{1}}$ 10^{1} 10^2 $\overline{1}$ \tilde{e}_R MSUSY (TeV) (J. Hisano Moriond 14) ϵ

Not necessary should follow the "**accidents**" of the SM

**Example 28 We are forced
to demand these
symmetries
to natural BSM** to demand these symmetries to *natural* **BSM**

B violations: Proton decay \rightarrow $\Lambda \geq 10^{15}$ GeV **L** violation: Larger neutrino masses $ightharpoonup \Lambda \geq 10^{15}$ GeV **Flavor** violations \rightarrow $\Lambda \geq 10^5$ TeV **CP** violation: EDMs

 \rightarrow $\Lambda \geq 10$ TeV

But no sign of BSM effects in \sim millions of Z:

But no sign of BSM effects in \sim millions of Z:

But no sign of BSM effects in \sim millions of Z:

Expected from strongly-coupled BSM:

$$
\frac{A}{S} \sim O(1) \text{ effects}
$$

$$
S \sim (m_{\text{W}}/\Lambda)^2 \sim 0.01
$$

T could be made small by symmetries (custodial) but no S

☛ touching the "BSM's bones"

But no sign of BSM effects in \sim millions of Z:

Expected from strongly-coupled BSM:

$$
\frac{A}{S} \sim O(1) \text{ effects}
$$

$$
S \sim (m_{\text{W}}/\Lambda)^2 \sim 0.01
$$

T could be made small by symmetries (custodial) but no S

☛ touching the "BSM's bones"

But *"one swallow doesn't make a spring"*

LEP: First important place for *natural* theories to show up But no sign of BSM effects in \sim millions of Z: \widehat{T} $\overbrace{\bm{T}}$ \widehat{S} $\overline{\widehat{S}}$ 0.003 0.004 0.005 0.006 0.007 0.008 Ε3 0.003 0.004 $^{\circ\mathrm{.00}}|$ m $\mathrm{_{H}}\simeq 100\;\mathrm{GeV}$ 0.006 0.007 0.008 0.009 0.01 Ε1 $m_H \sim 1$ TeV \bullet X **Higgsless** (a la QCD) ed ion is
1 effects
In the **Z Z stops Z Z In the supersymmetric SM:** stop mass > 300 GeV $T \sim O(10^{-2})$ **^**

LHC: Second important place for natural theories to show up

EXAMPLE THE Higgs discovery has provided a new

"handle" to catch BSMs

With the **Higgs**, we have had access to new relevant information by measuring its **properties**

The Higgs is usually the most "sensitive" SM particle to new-physics

Examples:

Examples:

Consequences:

➥ Even with less statistics at the **LHC**, similar impact today in new-physics as **LEP**

LHC: **pp→h (→γγ) ~ 103 events** LEP: ee → \overline{Z} (→ff) ~ 10⁶ event

First question to answer:

What are the most relevant Higgs couplings to measure? Higgs physicsHiggs physic. **probes testing new directions in the "parameter space" of BSMs** EW obs.

Model independent analysis

Assuming a large new-physics scale: **Λ>>mW** (as LHC suggests)

give the leading deviations to SM Higgs physics from BSM *x*
d
*<i>u***_p
y**d
***n**DCM* and the CP-odd operators

BCOUDINGS (assuming CP-conservation and family univer *,* (9) *OHW* ^f ⁼ *ig*(*D^µH*) *^a*(*D*⌫*H*)*W* f*a ^µ*⌫ *, OHB*^e = *ig*⁰ (*D^µH*) $\frac{1}{2}$ ^f ⁼ **THEW-PHYSICS, HOL ANECURE** 3!*g*✏*abc^W* ^f*^a* ⌫ *^µ W^b* ⌫⇢*W^c* ⇢*^µ , O*3*G*^e = 3!*gsfABCG*e*^A* ⌫ *^µ G^B* ➥ Only **8 Higgs couplings** *(assuming CP-conservation and family universality)* can be modified by new-physics, **not** affecting anything else

= ✏*^µ*⌫⇢*F*⇢*/*2. There are two more CP-even operators involving two Higgs fields and AP, Riva, JHEP 1401 (2014) 151 Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066

Coming from dimension-6 operators whose effects on the vacuum, $H = v$, give only a redefinition of the SM couplings:

e.g.

1

 g_s^2

 g_s^2 $+$ Λ^2 $G_{\mu\nu}^2$ \otimes G G

 v^2

◆

 (1)

Not physical!

But can affect **Higgs** physics:

There are 8 operators of this type

(assuming CP-conservation) for one family

(assuming CP-conservation)

$$
\Delta \mathcal{L}_{BSM} = \frac{\delta g_{hff}}{\int h f_L f_R + h.c.} \qquad \text{(f=b, \tau, t)}
$$

$$
+ \frac{g_{hVV}}{g_{hVV}} h \left[W^+ \,^\mu W_\mu^- + \frac{1}{2 \cos^2 \theta_W} Z^\mu Z_\mu \right]
$$

$$
+ \frac{h}{\kappa_G} \frac{h}{v} G^{\mu\nu} G_{\mu\nu}
$$

$$
+ \frac{h}{\kappa_{\gamma\gamma}} \frac{h}{v} F^{\gamma \, \mu\nu} F_{\mu\nu}^{\gamma}
$$

$$
+ \frac{h}{\delta g_{3h}} F^{\gamma \, \mu\nu} F_{\mu\nu}^Z
$$

Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066 AP, Riva, JHEP 1401 (2014) 151

(assuming CP-conservation)

$$
\Delta \mathcal{L}_{\text{BSM}} = \frac{\delta g_{hff}}{\phi_{hff}} h \bar{f}_L f_R + h.c. \qquad (\text{f=b, } \tau, t)
$$

+
$$
\frac{g_{hVV}}{g_{hVV}} h \left[W^+ \mu W^-_\mu + \frac{1}{2 \cos^2 \theta_W} Z^\mu Z_\mu \right]
$$

+
$$
\frac{k_{GG}}{v} G^{\mu\nu} G_{\mu\nu}
$$

+
$$
\frac{k_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^\gamma_{\mu\nu}
$$

+
$$
\frac{k_{\gamma Z}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^Z_{\mu\nu}
$$

+
$$
\frac{\delta g_{3h}}{\delta g_{3h}} h^3
$$

(d)
$$
h^3
$$

Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066 AP, Riva, JHEP 1401 (2014) 151

(assuming CP-conservation)

$$
\Delta \mathcal{L}_{\text{BSM}} = \frac{\delta g_{hff}}{\delta h f_L f_R + h.c.} \qquad (\text{f=b, } \tau, t)
$$
\n6 measured\n
$$
+ \frac{g_{hVV}}{g_{hVV}} h \left[W^+ \mu W^-_\mu + \frac{1}{2 \cos^2 \theta_W} Z^\mu Z_\mu \right]
$$
\nat the LHC\n
$$
+ \frac{\kappa_{GG}}{\nu} \frac{h}{v} G^{\mu\nu} G_{\mu\nu}
$$
\n
$$
+ \frac{\kappa_{\gamma\gamma}}{\nu} \frac{h}{v} F^{\gamma \mu\nu} F^\gamma_{\mu\nu}
$$
\n
$$
+ \frac{\kappa_{\gamma Z}}{\delta g_{3h}} h^3
$$
\n(F³)

Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066 AP, Riva, JHEP 1401 (2014) 151

More and Complete Contracts Higgs coupling determination

All parameters floating and κ $_{\mathsf{v}}$ **≤1**

(assuming CP-conservation)

$$
\Delta \mathcal{L}_{BSM} = \begin{bmatrix}\n\delta g_{hff} h \bar{f}_L f_R + h.c. & (\text{f=b, } \tau, t) \\
\delta \text{ measured} & h \left[W^+ \, ^\mu W^-_\mu + \frac{1}{2 \cos^2 \theta_W} Z^\mu Z_\mu \right] \\
\text{at the LHC} & h \left[W^+ \, ^\mu W^-_\mu + \frac{1}{2 \cos^2 \theta_W} Z^\mu Z_\mu \right] \\
\frac{\kappa_{GG}}{v} \frac{1}{v} G^{\mu\nu} G_{\mu\nu} & \\
\frac{\kappa_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma \, \mu\nu} F^\gamma_{\mu\nu} & \\
\frac{\kappa_{\gamma Z}}{v} \frac{1}{v} F^{\gamma \, \mu\nu} F^Z_{\mu\nu} & \\
\frac{\kappa_{\gamma Z}}{v} \frac{1}{v} \frac{1}{v} \text{Affects } h^3; \\
\text{It can be measured in the far future by} \\
\text{GG} \rightarrow \text{th}\n\end{bmatrix}
$$

Experimental bound on h→Zγ

... last hope for finding O(1) deviations?

The *gallery of the process of the process to* the couplings of the coupling \mathbf{f}_i **Prospects for 3h-coupling The** *gega* **is the** *frospects* for sit-couplin

from G.Panico's talk at "BSM Higgs Workshop@LPC" *Natural* **expectations for primary Higgs couplings**

MSSM with heavy spectrum (≫**100 GeV)**

Main effects from the **2nd Higgs doublet:**

Superpartners can only modify Higgs couplings at the loop-level: Only stops/sbottoms give some contribution to hgg/hγγ (not very large)

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

from arXiv:1212.524 (data before Moriond 13)

Higgs coupling measurements are already **ruling out** susy-parameter space

Higgs coupling measurements are already **ruling out** susy-parameter space

Composite Higgs

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

Giudice,Grojean,AP,Rattazzi 07

$$
\frac{g_h_{WW}}{g_{hWW}^{\text{SM}}} = \sqrt{1 - \frac{v^2}{f^2}}
$$

 $f =$ Decay-constant of the PGB Higgs related to the compositeness scale (model dependent but expected $f \sim v$)

Composite PGB Higgs couplings

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

ghWW $g_{hW}^{\rm SM}$ hWW = $\sqrt{2}$ $1 - \frac{v^2}{f^2}$ *f* 2 Giudice,Grojean,AP,Rattazzi 07 AP,Riva 12

 $f =$ Decay-constant of the PGB Higgs (model dependent but expected $f \sim v$) related to the compositeness scale

$$
\frac{g_{hff}}{g_{hff}^{\text{SM}}} = \frac{1 - (1 + n) \frac{v^2}{f^2}}{\sqrt{1 - \frac{v^2}{f^2}}} \qquad n = 0, 1, 2, ...
$$

McHMA MCHM4

small deviations on the h $\gamma\gamma(gg)$ -coupling due to the Goldstone nature of the Higgs

composite two-dimensional likelihood contracts are shown for the two-dimensional likelihood contracts are shown for references and the two-dimensional likelihood contracts are shown for references and the contracts are sho ζ \mathcal{S} sides (2.40) $\lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ $\xi < 0.15$ (0.20), MCHM5 **MCHM4** $t \ge 0.15(0.20)$ MCHM5 **MCHM5**

"mass term"-

S
 *Corrections to hZγ-couplin , O*3*^G* = not protected by the PGB symmetry Corrections to hZy-coupling $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu\nu}$

Corrections to $h\gamma\gamma(gg)$ -coupling protected by the PGB symmetry *^OBB* ⁼ *^g*0² *|H| Bµ*⌫*B^µ*⌫ *, ^OGG* ⁼ *^g*² *a*(*d a*) and *i* \overline{O} *D*_{\overline{O} *J*, *n*), *a*(*d*_{*a*)}, *a*)}

 $\vert\vert\vert H\vert^2 G^A_{\mu\nu}G^{A\mu\nu}$ *^µ*⌫ *, OHB* = *ig*⁰ (*D^µH*)

 $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu\nu}$

^µ G^B

, (6)

S
 *Corrections to hZγ-couplin , O*3*^G* = not protected by the PGB symmetry Corrections to hZy-coupling $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu\nu}$

Corrections to $h\gamma\gamma(gg)$ -coupling protected by the PGB symmetry *^OBB* ⁼ *^g*0² *|H| Bµ*⌫*B^µ*⌫ *, ^OGG* ⁼ *^g*²

a(*d a*) and *i* \overline{O} *D*_{\overline{O} *J*, *n*), *a*(*d*_{*a*)}, *a*)} "mass term"-

 $\vert\vert\vert H\vert^2 G^A_{\mu\nu}G^{A\mu\nu}$ *,* (6) *^µ*⌫ *, OHB* = *ig*⁰ (*D^µH*)

 $D_{\mu}H^{\dagger}D_{\nu}HB^{\mu\nu}$

^µ G^B

Going beyond the MSSM and MCHM

PGB Composite Higgs Elementary Higgs (SUSY) Towards a more extended "cartography" of *natural* **BSMs**

PGB Composite Higgs Elementary Higgs (SUSY) Towards a more extended "cartography" of *natural* **BSMs** *Mostly unexplored territory* **Example 18 Example 19 Avenues Avenues**

Susy + TeV Strong dynamics motivated to keep **naturalness** in the absence of superpartners below TeV and m_h~125 GeV (hard susy-breaking effects?))

Possibilities:

1) Strong-sector with accidental ("emergent") supersymmetry delivering a composite-susy light Higgs (m_h≪ Λ ~ TeV)

T.Gherghetta, AP 03,R. Sundrum 04,M.Redi, B.Gripaios 10

2) MSSM Higgs coupled to a TeV strong-sector breaking susy (SBS):

$$
g_i \int d^2\theta\ H_i \mathcal{O}_i
$$

A. Azatov, J.Galloway and M. A. Luty 12

T. Gherghetta, AP 11

☛ SBS could also break EWSB

similarity with Bosonic TC

M.Dine,A.Kagan,S. Samuel 90

3) Higgs as a dilaton: $v = f_{\text{dilat}}$ (associated to the breaking of scale invariance)

1) Strong-sector with "Emergent supersymmetry" delivering a composite-susy light Higgs ($m_h \ll \Lambda$)

> ➥ Modifications of Higgs couplings as in MCHM but also in hγγ,hGG (since **no** shift-symmetry protecting) $\sim \xi$ = (v/f)²

8 of 8

1) Strong-sector with "Emergent supersymmetry" delivering a composite-susy light Higgs ($m_h \ll \Lambda$)

> ➥ Modifications of Higgs couplings as in MCHM but also in hγγ,hGG (since **no** shift-symmetry protecting) **8 of 8** $\sim \xi$ = (v/f)²

but **T<** O(10-3) forces f > few TeV **^**

2) MSSM Higgs coupled to a strong-sector breaking susy (SBS):

Higgs mixing to the SBS: ϵ_H

Correction with respect to the SM:

 $\delta g_{h\gamma\gamma}$ $\frac{\partial g_{h\gamma\gamma}}{g_{h\gamma\gamma}^{\rm SM}}\sim \epsilon_H^2\xi$

 δg_{3h} $\frac{\delta g_{3h}}{g_{3h}^{\rm SM}}\sim g_{*}^{2}\epsilon_{H}^{6}\xi\sim \epsilon_{H}^{2}\xi$

 $(g_*^2 \epsilon_H^4 \sim \lambda_{\rm SM} \sim 1)$

 δg_{hVV} $\frac{\delta g_{hVV}}{g_{hVV}^{\rm SM}}\sim \epsilon_H^4 \xi$

4) Higgs as a dilaton:

excitation along the EWSB condensate = scale-breaking condensate

mh≪Λ~ TeV since it is a dilaton

B.Bellazzini,C.Csaki,J.Hubisz,J.Serra, J.Terning 14 F.Coradeschi, P.Lodone, D.Pappadopulo, R.Rattazzi,L.Vitale 14 E.Megias,O.Pujolas 14

 $\delta g_{h\gamma\gamma}$ $g_{h\gamma\gamma}^{\rm SM}$ $\sim O(1)$

extra contributions from the scale anomaly

$$
\frac{\delta g_{3h}}{g_{3h}^{\rm SM}} = \frac{5}{3}
$$

Expected largest corrections to Higgs couplings:

New Higgs decays also possible

TeV susy-breaking allows

Higgs as the superpartner of the neutrino

Fayet,'76; AP,Riva,Biggio'12

Is the Higgs the first SUSY particle discovered?

The Higgs could decay invisibly The Higgs could decay invi

No sign of so, up to now:

CMS: BRinv < 58% (44% expected) ATLAS: BRinv < 75% (62% expected)

Relaxing the MFV condition: Flavor violation in Higgs decays h→f1f2

Interesting in models where the origin of fermion masses comes from mixing with a new sector

 $\bm{\mathrm{Prediction:}} \;\; \mathbf{BR}(\mathbf{h} \rightarrow \tau \mu) \sim \frac{\mathbf{m}_{\mu}}{\mathbf{m}_{\tau}} \mathbf{BR}(\mathbf{h})$ \mathbf{m}_{μ} $\frac{\mathbf{m}_{\mu}}{\mathbf{m}_{\tau}}\mathbf{BR}(\mathbf{h}\rightarrow\tau\tau)\sim\mathbf{0.4}\%$

Beyond the primary Higgs couplings

+ *GG h* α *Brimar h* **A** *h* Beyond the primary Higgs couplings

+ *GG h* α *Brimar h* **A** *h* Beyond the primary Higgs couplings

hVV couplings

but beaten paths… (not independent from other couplings already tested)

Some modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$ Constrained by LEP1

at the per-mille level!

can be proven in the proven in the contributions from $\mathsf{A}\mathsf{V}\mathsf{V}$ and $\mathsf{A}\mathsf{V}\mathsf{V}$ custodial breaking hVV

effects can be written as *z*
zupetier 2*c*² ✓*^W* All effects can be written as a function of contributions to other couplings:

$$
\begin{split}\n\frac{\delta g_{ZZ}^h}{g_{Zff}^h} &= 2gm_W s_{\theta_W}^2 \left(\underbrace{\delta g_1^2 - \frac{\delta \kappa}{c_{\theta_W}^2}} \right), & \delta g_{ff'}^W = \frac{c_{\theta_W}}{\sqrt{2}} \left(\delta g_{ff}^Z V_{\text{CKM}} - V_{\text{CKM}} \delta g_{ff'}^Z \right) \text{ for } f = f_L \\
\frac{g_{Zff}^h}{g_{Zff}^h} &= 2 \underbrace{\delta g_{ff}^Z - 2 \underbrace{\delta g_1^Z (g_{ff}^Z c_{2\theta_W} + g_{ff}^{\gamma} s_{2\theta_W}) + 2 \underbrace{\delta \kappa_\gamma Y_f \frac{es_{\theta_W}}{c_{\theta_W}^3}}_{\theta_W}, & \frac{g_{Wff'}^h}{g_{Wff'}^h} &= 2 \underbrace{\delta g_{ff'}^W - 2 \underbrace{\delta g_1^Z g_{ff'}^W c_{\theta_W}^2}_{\theta_W}, \\
\frac{\kappa_{ZZ}}{\kappa_{ZZ}} &= \frac{1}{2c_{\theta_W}^2} \left(\delta \kappa_\gamma + \kappa_{Z\gamma} c_{2\theta_W} + 2 \kappa_{\gamma\gamma} c_{\theta_W}^2 \right),\n\end{split}
$$

*g^W ff*⁰ = *c* \mathbf{S}^{r} ✓*^W f* \cdot Corrections to Zff **δg1Z ,δκγ** : Corrections to TGC **δgf ^Z** : Corrections to Zff **δgh** vv : Corrections to hVV **κ^Zγ , κγγ** : Corrections to hZγ & hγγ {

can be proven in the proven in the contributions from $\mathsf{A}\mathsf{V}\mathsf{V}$ and $\mathsf{A}\mathsf{V}\mathsf{V}$ custodial breaking hVV

BUT worth to explore. Some interesting physical effects in:

BUT worth to explore. Some interesting physical effects in:

VH associated production

BUT worth to explore. Some interesting physical effects in:

BUT worth to explore. Some interesting physical effects in:

Conclusions

With the Higgs \blacksquare the SM is completed

➥ No need for anything else (at least) up to around the Planck scale

… but very unnatural theory !

Natural models demand departures from SM **Higgs couplings:**

• Today, as Higgs coupling measurements agree with the SM, we only place bounds on new-physics

The Higgs is another weapon of BSM destruction

● Tomorrow, who knows, it can illuminate on new-physics

