Cedric Delaunay, LAPTh

What have we missed? (not twin-higgs, nor very exotic signals)

What have we missed? (not twin-higgs, nor very exotic signals)

• if there is new physics, ...ALL of it!

What have we missed? (not twin-higgs, nor very exotic signals)

if there is new physics, ...ALL of it!

more serious, perhaps less deep, examples:

- Composite light flavor partners (RH charm)
 - why: composite flavor symmetries (ε_K)
 - benefits: hide compositeness in Higgs rates, flavorful naturalness

What have we missed? (not twin-higgs, nor very exotic signals)

if there is new physics, ...ALL of it!

more serious, perhaps less deep, examples:

- Composite light flavor partners (RH charm)
 - why: composite flavor symmetries (ε_K)
 - benefits: hide compositeness in Higgs rates, flavorful naturalness
- CPV BSM Higgs sector $(\tilde{W}^{\mu\nu}W_{\mu\nu}H^{\dagger}H)$ at ~1TeV)
 - why: LEP+EDM ok, so why not?
 - how: lepton asym. in WH production

some questions?

- There might also be light comp. charm partners:
 - how well can one tag charm-jets?
 - have we fully exploited the extra handle?
 - could they play a role in naturalness?

some questions?

- There might also be light comp. charm partners:
 - how well can one tag charm-jets?
 - have we fully exploited the extra handle?
 - could they play a role in naturalness?

- more naive/philosophical:

 Have all CP phases to be ~o(1)?
- e.g. EDMs don't see new physics down to very short distance, should we worry? CP relaxation mechanism?

Points

- 1. Well-Motivated Signatures: Some have been overlooked
 - ► Example: (\tilde{H}) : \tilde{t}_R : $\tilde{\tau}_R$: \tilde{G} \Rightarrow $b\bar{b}\tau^+\tau^- + \not\!\!E_T$
- 2. Simple Signatures: Not every signature has coverage
 - ► Example: High multiplicity b-jets (≥ 5)
 - **Example:** $t\bar{t} + n$ -jet resonances
- 3. **Higher Luminosity:** Many opportunities to seize
 - Example: rare t, Z, W and h decays
- 4. Quirks: Most exotic quirk signatures completely uncovered
 - Tracks that bend against the magnetic field
 - Straight highly ionizing tracks (may explode in the detector)
 - Charged tracks that "lose mass" as they propagate (may explode)
 - Wobbly tracks
 - ...and more

1/2

Questions

1. Cut-and-Count Searches:

In the space of all possible prompt signatures, are there gaps?

2. Exotics Objects:

- Are all possible LHC accessible exotic objects known?
- Is there a finite set of searches that can span this space?

3. Trigger:

Last minute crazy trigger-defying models?

2/2

"INTERESTING" POINTS

- Exotics is experimentally undersubscribed
- Displaced vertices across entire range of lifetimes are interesting but difficult
- Large multiplicity of displaced vertices evades all current searches

OUESTIONS FOR DISCUSSION

- Can we make a connection between exotic signatures and naturalness?
- Are there (novel) experimental observables which are sensitive to a broad class of new models? Can they be incorporated into a trigger?
- Is there a feature in the design of future detectors that could allow discovery of something impossible at the LHC?

Non-SM Higgs Decays Yada Yada Yada Yada ...

Long-Lived Particles Yada Yada Yada Yada ...

Non-SM Higgs Decays Yada Yada Yada Yada ... Long-Lived Particles Yada Yada Yada Yada ...

Long-Lived Topics (because LHC keeps missing them!)

Non-SM Higgs Decays Yada Yada Yada Yada ...

Long-Lived Particles Yada Yada Yada Yada ...

Long-Lived Topics (because LHC keeps missing them!)

Could there be something subtle wrong with SM QFT?

Non-SM Higgs Decays Yada Yada Yada Yada ...

Long-Lived Particles Yada Yada Yada ...

Long-Lived Topics (because LHC keeps missing them!)

Could there be something subtle wrong with SM QFT?

- Looking for higher dim operators or some other problem with NLO QFT
- Probably has to avoid flavor -- probably in gauge sector
- SM measurements!
- Pushing into QCD
 - Test 3,4 jet pt-ratio, angular distributions at highest possible E
 - Test multi-jet distributions more than just S_T distribution
 - Extend and develop your "black hole" measurement!
- Gluon-EW boson interactions
 - Study via jets + EW boson at highest possible E
- Detailed look at EW dibosons.

Concerning "selection bias" ("anthropics") vs. naturalness

In a theory of theories, "anthropics" does NOT address SM naturalness

Example: string landscape NOT alternative to TeV-scale solution to naturalness

Concerning "selection bias" ("anthropics") vs. naturalness

In a theory of theories, "anthropics" does NOT address SM naturalness

- Example: string landscape NOT alternative to TeV-scale solution to naturalness
- World suitable for development and activity of any observers
 - Must last a long time and be rather big
 - Cosmological constant must be small
 - Must have objects that can be complex but not be black holes
 - Need a hierarchy between gravity and other scales
- So within theory of theories, selection bias does require choosing sample of vacua/theories/regions with small cosmo constant & hierarchy of scales

Concerning "selection bias" ("anthropics") vs. naturalness

In a theory of theories, "anthropics" does NOT address SM naturalness

- Example: string landscape NOT alternative to TeV-scale solution to naturalness
- World suitable for development and activity of any observers
 - Must last a long time and be rather big
 - Cosmological constant must be small
 - Must have objects that can be complex but not be black holes
 - Need a hierarchy between gravity and other scales
- So within theory of theories, selection bias does require choosing sample of vacua/theories/regions with small cosmo constant & hierarchy of scales

AN OBSERVABLY-LIGHT ELEMENTARY SM HIGGS BOSON?

NOT REQUIRED!

- Technicolor, SUSY, small Yukawas are all acceptable; will appear in this sample
- Statistics of vacua in a theory of theories reintroduces the naturalness problem!
 - To avoid this conclusion, need a theory of theories with very special statistics
 - E.g. Arkani-Hamed & Dimopolous in "Scanning"; they consider theories with SM particles and forces, not allowing any changes to particle/field content. Highly non-generic