Differential top pair production in NNLO QCD

Alexander Mitov

Cavendish Laboratory

UNIVERSITY OF CAMBRIDGE

Work in progress with Michael Czakon and Paul Fiedler

The main point

We have huge effort ongoing for the calculation of

- Fully differential top pair production at NNLO
- Everything is included no approximations!
- Stable top quarks only. Down the road include decay but not a priority now.
- For the moment we compute only pre-decided binned distributions.
- Cannot store events for subsequent analyses.
- Calculations are very expensive and take long time. It is not easy at all to redo
 a calculation to change it "a little bit". Of course we will make the effort if the need is there
- For the moment we compute simultaneously with several fixed scales mu_R, mu_F = (1/2,1,2)*M_{top}. Dynamical scales in the future.
- Use mostly MSTW2008, but we also have almost everything computed also with NNPDF, CT10 and HERA.
- Calculations for now only for LHC7 and LHC8. Any energy can be done matter of CPU!
 Tevatron computed, too.
- M_{top}=173.3 GeV only. If top mass dependence is needed separate calculations will have to be done. CPU constrained. Perhaps compute for 3 M_{top} values that are 1 GeV apart and use them to approximate in a narrow window. Good enough?

The main point

No papers yet. However:

Tevatron results ready to go (matter of days).

◆ LHC results much less ready. Mostly will need time for more runs. Timescale ~ weeks.

Major point to stress: the calculation is fully automated and completely generic. If it works for one collider/energy should work for all! Our Tevatron results are of very high quality and in our eyes validate what we are doing.

The remainder of the talk:

Results for the Tevatron (in the context of A_{FB}).
 These results are still preliminary but quite settled.

✓ Results for LHC 7 TeV. Extremely preliminary (plotted this morning for the first time ...)

The A_{FB} puzzle at the Tevatron

Czakon, Fiedler, Mitov, to appear

QCD diagrams that generate asymmetry:

Kuhn, Rodrigo '98

... and some QCD diagrams that do not:

✓ For ttbar: charge asymmetry starts from NLO

- ✓ For ttbar + jet: starts already from LO
- ✓ Asymmetry appears when sufficiently large number of fermions (real or virtual) are present.
- ✓ The asymmetry is QED like.
- ✓ It does not need massive fermions.
- ✓ It is the twin effect of the perturbative strange (or c- or b-) asymmetry in the proton!

Definition of the asymmetry:

$$A_{\rm FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

... and the CDF measurement versus (known) SM:

Discrepancy $\leq 3\sigma$

✓ New D0 measurement (2014): it is much lower than CDF and in good agreement with SM

What is known about A_{FB}?

✓ The largest known contribution to A_{FB} is due to NLO QCD, i.e. ~ $(\alpha_S)^3$.

Kuhn, Rodrigo '98

Higher order soft effects probed. No new effects appear (beyond Kuhn & Rodrigo).

Almeida, Sterman, Wogelsang '08 Ahrens, Ferroglia, Neubert, Pecjak, Yang `11 Manohar, Trott '12 Skands, Webber, Winter `12

 ✓ F.O. EW effects checked. ~25% effect: not as small as one might naively expect! Hollik, Pagani '11

Bernreuther, Si '12

✓ BLM/PMC scales setting does the job? Claimed near agreement with the measurements.

Brodsky, Wu '12

Higher order hard QCD corrections? <u>Next slide.</u>

✓ Final state non-factorizable interactions? Unlikely.

Mitov, Sterman '12 Rosner '12

NNLO QCD corrections to A_{FB}

Czakon, Fiedler, Mitov, to appear

✓ Computed AFB following the definition and binning of CDF '12

- Inclusive
- |∆y|
- M_{tt}
- P_{T,tt}

$$A_{\rm FB} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}, \text{ where } \sigma^\pm \equiv \int \theta(\pm \Delta y) \, d\sigma$$

✓ The EW corrections to inclusive A_{FB} included (from Bernreuther, Si `12)

$$A_{\rm FB} \equiv \frac{N_{ew} + \alpha_S^3 N_3 + \kappa \alpha_S^4 N_4}{\alpha_S^2 D_2 + \alpha_S^3 D_3 + \kappa \alpha_S^4 D_4}$$

= $\alpha_S \frac{N_3}{D_2} + \kappa \alpha_S^2 \left(\frac{N_4}{D_2} - \frac{N_3}{D_2} \frac{D_3}{D_2} \right) + \mathcal{O}(\alpha_S^3)$ Two alternative expansions
 $+ \frac{N_{ew}}{\alpha_S^2 D_2} \left(1 - \kappa \frac{\alpha_S D_3}{D_2} \right)$.

NNLO QCD corrections to A_{FB}

- ✓ Checks and quality of the results
 - ✓ Pole cancellation: in each bin, for each scale.
 - \checkmark MC errors (from integration) are a big worry due to large cancellation in A_{FB}
 - ✓ Agreement with sigma_{TOT} (Top++) to better than 0.5 permil (each scale)
 - ✓ MC error in each bin is:
 - Few permil for differential distributions
 - Below 1% for AFB in each bin; with only highest Mtt bin with 2%
 - ✓ MC error on inclusive AFB is few permil.
 - Clearly, the numerical precision of the results is very high.
 - ✓ AT NLO QCD we agree with MCFM and Bernreuther & Si.
 - \checkmark Only one more check left at NNLO (the P_{T,tT} spectrum to compare with ttj)
 - ✓ Computed for generic independent μ_F and μ_R (again, non-dynamic = M_{top})

How to read the above plot:

NLO, *NNLO* : exact numerator and denominator (see previous slide) *nlo*, *nnlo* : expanded in powers of a_s *NLO, NNLO*: exact numerator and denominator
 nlo, nnlo: expanded in powers of a_s

0 2 4 6 8 Scenarios

✓ We find large QCD corrections: NLO ~ 30% of LO (recall EW is 25% of LO).

This was not expected, given soft-gluon resummation suggests negligible correction.

✓ Adding all corrections A_{FB} ~ 10%.

Agrees with D0 and CDF/D0 naive combination

 \checkmark Less than 1.5 σ below CDF

We consider this as agreement between SM and experiment.

✓ We observe good perturbative convergence (based on errors from scale variation)

Expanded results (both nlo and nnlo) seem to have accidentally small scale variation

Top pair at NNLO

Alexander Mitov

LHC 7 TeV – Super preliminary !

Czakon, Fiedler, Mitov, to appear

Errors due to scale variation only

Czakon, Fiedler, Mitov, super preliminary

Top pair at NNLO

Cannes, 26 Sep 2014

Errors due to scale variation only

Summary and Conclusions

- Presented preliminary new results for NNLO QCD differential distributions:
- Tevatron: in the context of A_{FB}
 - > We find that QCD + EW corrections bring $A_{FB} \sim 10\%$, in agreement with D0 and near-agreement with CDF
 - The numerical results are of high quality
- LHC 7 TeV
 - Takes long time to compute
- > LHC 8 in the pipeline; Extension to LHC 13/14 will follow.
- > For now only Mtop=173.3 Various M_{top} values possible if needed.
- > We still haven't had the chance to analyze the physics implications but this will be forthcoming
- Looking forward to many applications for these and future results!