ggF jet bin uncertainties in $H \rightarrow WW$

David Hall on behalf of HSG3 ATLAS Higgs WG (N)NLO MC and Tools Workshop for LHC Run 2 17th December 2013

Motivation

* Theoretical uncertainty in ggF jet binning is a leading uncertainty on signal strength, μ

***** Current prescription doesn't use latest calculations

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

ATLAS-CONF-2013-030

Difficulties with scale uncertainties in exclusive jet cross sections

Based on §5.2 of YR2 (Stewart, Tackmann)

* restricting QCD radiation introduces Sudakov logarithms $L^2 = \ln^2(p_T^{\text{cut}}/Q)$

* when $p_T^{\text{cut}} \ll Q$ these are large, can overcome α_s suppression (would ideally resum)

$$\sigma_0(p_T^{\text{cut}}) = \sigma_{\text{tot}} - \sigma_{\ge 1}(p_T^{\text{cut}}) = \sigma_B \left\{ \left[1 + \alpha_s + \alpha_s^2 + \mathcal{O}(\alpha_s^3) \right] - \left[\alpha_s (L^2 + L + 1) + \alpha_s^2 (L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_s^3 L^6) \right] \right\}$$

* cancellations between series cause scale uncertainties to be underestimated, e.g. for ggF with $\sqrt{s} = 7$ TeV and jet $p_{\rm T} = 30$ GeV $\sigma_0(p_{\rm T}^{\rm cut}) = 3.32$ pb { $[1 + 9.5\alpha_s + 35\alpha_s^2 + \mathcal{O}(\alpha_s^3)] - [4.7\alpha_s + 26\alpha_s^2 + \mathcal{O}(\alpha_s^3L^6)]$ }

 $\sigma_0(p_T^{\text{cut}}) = 3.32 \text{ pb} \left\{ \left[1 + 9.5\alpha_s + 35\alpha_s^2 + \mathcal{O}(\alpha_s^3) \right] - \left[4.7\alpha_s + 26\alpha_s^2 + \mathcal{O}(\alpha_s^3 L^6) \right] \right\}$

- * underestimation is important for H \rightarrow WW (p_T^{cut} = 25 GeV)
 - * see "pinching" effect
- * much work to develop methods to robustly probe higher order corrections

Higgs MC Workshop, 17th December 2013

Two prescriptions (YR2)

*** Combined-inclusive** (Stewart, Tackmann)

***** inclusive cross sections have uncorrelated uncertainties

* $\sigma_0 = \sigma_{\text{tot}} - \sigma_{\geq 1}$ $\sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}$ $\sigma_{\geq 2}$

- * this inflates uncertainties in exclusive cross sections
- * each component must be at same α_s accuracy

*** Jet veto efficiency** (Banfi, Salam, Zanderighi)

- * σ_{tot} and jet veto efficiencies have uncorrelated uncertainties
- * $\sigma_0 = \sigma_{\text{tot}} \epsilon_0$ $\sigma_1 = \sigma_{\text{tot}} (1 \epsilon_0) \epsilon_1$ $\sigma_{\geq 2} = \sigma_{\text{tot}} (1 \epsilon_0) (1 \epsilon_1)$
- * use different definitions of jet veto efficiency to probe higher order corrections (each definition has equivalent accuracy in pQCD)
- ★ at fixed-order, actually gives larger uncertainties than combinedinclusive prescription, but can choose accuracy of each step independently ⇒ use better calculations ⇒ smaller uncertainties
- * in YR2 only split into σ_0 and $\sigma_{\geq 1} \Rightarrow$ we extend to σ_0 , σ_1 and $\sigma_{\geq 2}$

Current prescription

*** Combined-inclusive**

- * $\delta\sigma_{tot}$ from HXSWG (NNLO+NNLL+EWK)
- * $\delta\sigma_{\geq 1}, \delta\sigma_{\geq 2}, f_i \text{ from HNNLO (NLO, LO)}$
- * standalone $\delta \sigma_{\geq 2}$ from MCFM (NLO)

***** Relative uncertainties in exclusive σ :

* $\delta \sigma_{\geq 2}$ (from MCFM)

NB: f_i are jet bin fractions

Proposed prescription

***** Jet veto efficiency

- * $\delta\sigma_{tot}$ from HXSWG (NNLO+NNLL+EWK)
- * $\delta \varepsilon_0$ from JetVHeto (NNLO+NNLL)
- * $\delta \varepsilon_1$ from MCFM (NNLO see later for why)

***** Relative uncertainties in exclusive σ :

$$\delta \sigma_0^2 = \delta \sigma_{\text{tot}}^2 + \delta \epsilon_0^2$$

$$\delta \sigma_1^2 = \delta \sigma_{\text{tot}}^2 + \left(\frac{\epsilon_0}{1 - \epsilon_0}\right)^2 \delta \epsilon_0^2 + \delta \epsilon_1^2$$

$$\delta \sigma_{\geq 2}^2 = \delta \sigma_{\text{tot}}^2 + \left(\frac{\epsilon_0}{1 - \epsilon_0}\right)^2 \delta \epsilon_0^2 + \left(\frac{\epsilon_1}{1 - \epsilon_1}\right)^2 \delta \epsilon_1^2$$

* Perform cross check with σ₁ (NLO+NLL')
* Petriello, Liu - arXiv:1303.4405

NB: ε_0 is probability of no jets

NB: ε_1 is probability of no 2nd jet, given that we have a jet

Results

ε_0 : 1st jet veto efficiency

***** Three possible definitions

* differ by NNNLO terms \Rightarrow probe higher order corrections

***** Use scheme (a) as central value

- * Prescription takes uncertainty band to be envelope of scale uncertainties of scheme (a) and central values of schemes (b) and (c)
- ***** Here, scheme difference dominates uncertainty
- ***** Gives larger uncertainty than combined-inclusive

***** Drell-Yan: schemes converge

Banfi, Salam, Zanderighi - YR2

8

ε_0 : 1st jet veto efficiency

- * JetVHeto resums NNLL Sudakov logs to all orders of α_s
- * Attached to 3 schemes individually
- ***** Significant improvement in accuracy

60

* Schemes are converging, and uncertainty is reduced

90

 p_{τ}^{veto} [GeV]

80

NNLO

anti-k_T jets, R=0.4

 $m_{\rm H}/4 \le \mu_{\rm p}, \mu_{\rm c} \le m_{\rm H}$

scheme (a)

🔆 scheme (b)

🚻 scheme (c)

 $gg \rightarrow H, m_{u} = 125 \text{ GeV}$

low bound is scheme (b), high bound is direct scale variation (now includes variation of * resummation scale too)

David Hall (Oxford)

Jet veto efficiency, 0.8

0 F

0.2

Ratio

9

ε_0 : 1st jet veto efficiency

- * Compared fixed order and resummed calculations to our MC setup (few changes for comparison)
 - * Powheg (large m_t limit)
 - * Pythia 8 (no hadronisation or MPI)
 - * ATLAS UE tune

***** Results are consistent

★ ⇒ allows us to reduce uncertainty by using resummation calculation

ε_1 : 2nd jet veto efficiency

***** Three analogous definitions of efficiency:

$$\epsilon_{1}^{(a)} = 1 - \frac{\sigma_{\geq 2}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{NNLO}}} + \mathcal{O}(\alpha_{s}^{3}) \qquad \epsilon_{1}^{(b)} = 1 - \frac{\sigma_{\geq 2}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{NLO}}} + \mathcal{O}(\alpha_{s}^{3})$$
$$\epsilon_{1}^{(c)} = 1 - \frac{\sigma_{\geq 2}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{LO}}} + \left(\frac{\sigma_{\geq 1}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{LO}}} - 1\right) \frac{\sigma_{\geq 2}^{\text{LO}}}{\sigma_{\geq 1}^{\text{LO}}} + \mathcal{O}(\alpha_{s}^{3})$$

* again, differ by NNNLO terms \Rightarrow probe higher order corrections * $\sigma_{\geq 1}^{\text{NNLO}}$ not available \Rightarrow cannot compute scheme (a)

- * come back to this later
- ***** we can calculate everything else with MCFM
- * let's look at schemes (b) and (c)

ε_1 : 2nd jet veto efficiency

* Schemes (b) and (c) in better agreement with each other than seen with fixedorder ε₀ calculation because pQCD series is converging better

***** Also reasonable agreement with Powheg

* Propose to

- ***** use MC for central value
- * take envelope of all scale variations around both schemes, since we don't have scheme (a)

***** NB: precision of MCFM needs improving...

MCFM jobs by S. Diglio, D. Hall

ε_1 : 2nd jet veto efficiency

- * Schemes (b) and (c) in better agreement with each other than with fixed-order ε₀ calculation because pQCD series is converging better
- ***** Also reasonable agreement with Powheg
- * Propose to
 - ***** use MC for central value
 - * take envelope of all scale variations around both schemes, since we don't have scheme (a)

***** NB: precision of MCFM needs improving...

MCFM jobs by S. Diglio, D. Hall

Is (a) between (b) and (c)?

* H+1j NNLO calculation done for gg-only diagrams

- * Petriello et al. arXiv:1302.6216
- ***** uses k_t jets with R=0.5 and $p_T > 30$ GeV
- * c.f. ATLAS anti- $k_t R = 0.4$ with $p_T > 25$ GeV

* Can calculate (a), (b) and (c) with this setup

	σ [fb]
H+1j LO	2713
H+1j NLO	4377
H+1j NNLO	6177
H+2j LO	1008
H+2j NLO	1044

	\mathcal{E}_1	
(a)	0.831	
(b)	(b) 0.761	
(c)	0.843	

***** find that (b) < (a) < (c)

Uncertainties in exclusive cross sections

* Propagate uncertainties to exclusive cross sections using equations on slides 5 & 6

	value	relative uncertainty		value	relative uncertainty		value	relative uncertainty
σ _{tot}	19.27	7.8%	σ _{tot}	19.27	7.8%	σ _{tot}	19.27	7.8%
σ ≥1	7.44	20.2%	ε 1	0.613	11.7%	ε ₁	0.613	21.5%
σ ≥2	2.29	69.7%	£ 2	0.701	23.8%	ε2	0.701	23.8%
σ 0	11.83	18.0%	σ ₀	11.81	14.1%	σ	11.81	22.9%
σ 1	5.15	42.6%	σ1	5.23	31.2%	σ1	5.23	42.3%
σ ≥2	2.29	69.7%	0 ≥2	2.23	59.3%	σ ≥2	2.23	65.8%
C	ombinod	inclusivo	I	lot voto o	fficionay		Tet veto e	fficiency

Combined-inclusive (current prescription) Jet veto efficiency (proposed prescription) Jet veto efficiency (fixed order results only - at request of Tackmann, et al.)

* JVE offers improvement over CI in 0, 1 jet bins (where majority of sensitivity lies)

Log-normal uncertainties

* In fitting code, we actually use log-normal uncertainties

 $\tilde{\sigma}_0 = \sigma_0 \cdot \exp(\delta\sigma_{\rm tot})^x \exp(\delta\epsilon_0)^y$

$$\tilde{\sigma}_1 = \sigma_1 \cdot \exp(\delta\sigma_{\text{tot}})^x \exp\left(\frac{-\epsilon_0}{1-\epsilon_0}\delta\epsilon_0\right)^y \exp(\delta\epsilon_1)^z$$
$$\tilde{\sigma}_{\geq 2} = \sigma_{\geq 2} \cdot \exp(\delta\sigma_{\text{tot}})^x \exp\left(\frac{-\epsilon_0}{1-\epsilon_0}\delta\epsilon_0\right)^y \exp\left(\frac{-\epsilon_1}{1-\epsilon_1}\delta\epsilon_1\right)^z$$

* where x, y, z are normally-distributed nuisance parameters

***** Impact of each n.p. on signal strength, μ :

- * For CI: $x \Rightarrow \sigma_{\text{tot}}, y \Rightarrow \sigma_{\geq 1}, z \Rightarrow \sigma_{\geq 2}$
- * For JVE: $x \Rightarrow \sigma_{tot}, y \Rightarrow \varepsilon_0, z \Rightarrow \varepsilon_1$

	Combined inclusive			Jet veto efficiency		
	0 jet	1 jet	0+1 jet	0 jet	1 jet	0+1 jet
x	$+15.4\% \\ -8.6\%$	$^{+0\%}_{-0\%}$	$+7.1\% \\ -4.9\%$	$+9.6\% \\ -5.4\%$	+8.8% -4.8%	$+8.7\% \\ -5.7\%$
y	$+15.1\% \\ -8.4\%$	$+30.2\% \\ -16.3\%$	$+4.0\% \\ -3.4\%$	$+14.2\% \\ -8.0\%$	$+19.5\% \\ -10.5\%$	$^{+1.1\%}_{-0.9\%}$
z	$^{+0\%}_{-0\%}$	$+31.4\% \\ -16.6\%$	+10.9% -8.2%	$^{+0\%}_{-0\%}$	$+17.4\% \\ -9.5\%$	$+7.1\% \\ -5.0\%$

Fits performed by Y. Hernandez Jimenez

	CI	JVE
$\Delta \mu$	$^{+13.6\%}_{-10.1\%}$	$^{+11.3\%}_{-7.6\%}$
$\Delta \sigma_{ m meas}$	$+11.6\% \\ -8.9\%$	+7.2% -5.1%

David Hall (Oxford)

16

Higgs MC Workshop, 17th December 2013

Cross check with σ_1

***** Recent NLO+NLL' calculation of σ₁ ***** Petriello, Liu - YR3

* For ATLAS jets ($p_T > 25$ GeV, R = 0.4) and $m_H = 125$ GeV

- * $\sigma_1 = 5.55$ pb with 30% relative uncertainty
- ***** consistent with both prescriptions
 - ***** CI: $\sigma_1 = 5.15 \text{ pb}$
 - ***** JVE: $\sigma_1 = 5.23$ pb

Extrapolation to other m_H

***** We use same jet p_T threshold for both jet vetoes

- * $\varepsilon_0 = \varepsilon_0(\sqrt{s}, m_{\rm H}, p_{\rm T}^{\rm veto})$
- * $\varepsilon_1 = \varepsilon_1(\sqrt{s}, m_{\rm H}, p_{\rm T}^{\rm veto})$
- * We can approximate $\delta \varepsilon_0$ and $\delta \varepsilon_1$ at other $m_{\rm H}$ values using our $m_{\rm H}=125$ GeV sample by evaluating at different jet $p_{\rm T}$ thresholds * if $\Delta m_{\rm H} \ll \sqrt{s}$, can approximate as a 2-scale problem
 - * $\varepsilon(8 \text{ TeV}, m_{\text{H}}, 25 \text{ GeV}) = \varepsilon(8 \text{ TeV}, 125 \text{ GeV}, 25 \text{ GeV}^* 125 \text{ GeV}/m_{\text{H}})$

***** Use this to extrapolate over range 115 GeV < $m_{\rm H}$ < 140 GeV

Summary

- * ATLAS $H \rightarrow WW$ propose a switch from combined-inclusive prescription to jet veto efficiency prescription
- * Allows us to use more advanced calculations
 - * NNLO+NNLL ε_0 from JetVHeto
 - * NLO H+2j from MCFM

* σ_1 consistent with latest resummation calculation (Petriello, Liu)

- * Initial estimates show a significant reduction in the jet binning contribution to $\Delta\mu$ and $\Delta\sigma_{meas}$
 - * reduction in $\Delta \sigma_{\text{meas}}$ particularly helpful in coupling measurements (e.g. ratios, λ_{WZ})

Backup slides

Hadronisation/MPI effects

Compare to MiNLO

* Compare to ATLAS MiNLO H+1j sample

- * 2nd jet described by Powheg (modified Sudakov)
- * more accurate than relying on Pythia PS with standard sample

* very similar result

David Hall (Oxford)

Higgs MC Workshop, 17th December 2013

Cross sections used in ε_1

David Hall (Oxford)

Higgs MC Workshop, 17th December 2013

CTEQ6.6 PDFs (instead of CT10)

ε_1 at lower accuracy

***** Possible to define ε_1 at lower accuracy: $\epsilon_1^{(a)} = 1 - \frac{\sigma_{\geq 2}^{\text{LO}}}{\sigma_{\geq 1}^{\text{NLO}}} + \mathcal{O}(\alpha_s^2) \qquad \epsilon_1^{(b)} = 1 - \frac{\sigma_{\geq 2}^{\text{LO}}}{\sigma_{\geq 1}^{\text{LO}}} + \mathcal{O}(\alpha_s^2)$ ***** these differ by NNLO terms

***** was done for ε_2

- ***** Gangal, Tackmann arXiv:1302.5437
- * H+3j only known at LO
- * jet veto efficiency results shown to be consistent with combined-inclusive method

