Electron-Muon Ranger (EMR)

Digitization and Reconstruction

François Drielsma Ruslan Asfandiyarov

University of Geneva

On Behalf of the EMR Group

38th MICE Collaboration Meeting February 23, 2014

Digitization Scheme

All digitization parameters are preliminary

convert energy given by Geant4 into the number of scintillation photons (nsph); 2000 photos/MeV

sample nsph with Poisson distribution

covert nsph to the number of trapped photons (ntph): trapping efficiency 2%

sample ntph with Poisson distribution

64-ch. PMT - bar readout

reduce ntph according to the length of wavelength shifting fiber (WLSf) and clear fiber (CLf) (naph): WLSf - 2.0 dB/m, CLf - 0.35 dB/m

- apply channel attenuation map: ight loss in connectors up to 30%
- sample naph with Poisson distribution

convert naph to the number of photoelectrons (npe): PMT quantum efficiency - 20%

sample npe with Poisson distribution

convert npe to the number of ADC counts: 8 ADC/npe

simulate electronics response: gaussian smearing - width 10 ADC

convert nADC to TOT: nADC=a+b*log(TOT/c+d)

covnert geant4 time to ADC counts (deltaT): 2.5ns/ADC

sample deltaT with Gaussian distribution: width - 2 ADC

1-ch. PMT - plane readout

reduce ntph according to the length of wavelength shifting fiber (WLSf) and clear fiber (CLf) (naph): WLSf - 2.0 dB/m, CLf - 0.35 dB/m

apply channel attenuation map: ight loss in connectors up to 30%

sample naph with Poisson distribution

convert naph to the number of photoelectrons (npe): PMT quantum efficiency - 14.5%

sample npe with Poisson distribution

- correct npe for photocathode non-uniformity: up to 50%
- 12 convert npe to the number of ADC counts: 1 ADC/npe
- simulate electronics response: 13 gaussian smearing - width 6.5 ADC

- set signal baseline (8bit ADC):~130 ADC
- simulate noise level number of fluctuations within 15 acquisition window: from 0 to 200

- set noise position: upwards/downwards fluctuations
- simulate negative voltage pulse with random noise

Electron-Muon Ranger (EMR), University of Geneva

38th MICE Collaboration Meeting, February 23, 2014 3/22

$\begin{array}{l} \mbox{Digitization: MC Raw} \rightarrow \mbox{MC Digitized} \\ \mbox{Total Charge Per Plane} \end{array}$

- 3 GeV muons simulated (to be compared with cosmics)
- left plot: energy deposition per plane in MeV
- right plot: digitized energy after electronics conversion total charge per plane in ADC counts

$\begin{array}{l} \mbox{Digitization: MC Digitized} \rightarrow \mbox{Cosmics} \\ \mbox{Total Charge Per Plane} \end{array}$

- 3 GeV muons simulated (to be compared with cosmics)
- left plot: digitized energy after electronics conversion total charge per plane in ADC counts
- right plot: total charge per plane from cosmic muons

even with peliminary digitization parameters the agreement is very good

$\begin{array}{l} \mbox{Digitization: MC Raw} \rightarrow \mbox{MC Digitized} \\ \mbox{Time Over Threshold} \end{array}$

- 3 GeV muons simulated (to be compared with cosmics)
- left plot: energy deposition per bar in MeV
- right plot: digitized energy after electronics conversion time over threshold measurement per bar in ADC counts

$\begin{array}{l} \mbox{Digitization: MC Digitized} \rightarrow \mbox{Cosmics} \\ \mbox{Time Over Threshold} \end{array}$

- 3 GeV muons simulated (to be compared with cosmics)
- left plot: digitized energy after electronics conversion time over threshold measurement per bar in ADC counts
- right plot: time over threshold measurement per bar from cosmic muons

- even with peliminary digitization parameters the agreement is very good
- peak around 15 present in both Monte Carlo and data. no explanation so far

$\begin{array}{c} \text{Digitization: MC Digitized} \rightarrow \text{Cosmics} \\ {}_{\text{Pulse Shape}} \end{array}$

- 3 GeV muons simulated (to be compared with cosmics)
- left plot: digitized energy converted into negative voltage (sampled with Landau distribution) pulse with random noise
- right plot: real ADC pulse from cosmics

even with peliminary digitization parameters the agreement is very good

Monte Carlo Raw 260 MeV muon

all energy depositions are visible

Digitized Monte Carlo 260 MeV muon

- only significant energy depositions are visible
- signals are smeared or even lost sometimes (due to statistical fluctuations)

Reconstruction: Timing Analysis

- event cleaning:
 - selection of primary particles (associated to triggers)
 - noise rejection
 - decay particles selection

- primary particles are saved in separate events
- noise events are grouped in one event
- all the rest are in the last event:
 - decay particles
 - cosmic muons

after cleaning event is ready for track reconstruction

Electron-Muon Ranger (EMR), University of Geneva 38th MICE Collaboration Meeting, February 23, 2014 12/22

Track Reconstruction Raw Track

primary and secondary tracks are easily identified

Electron-Muon Ranger (EMR), University of Geneva 38th MICE Collaboration Meeting, February 23, 2014 13/22

Track Reconstruction Primary Particle

- track is not a regular line
- fitted with a piecewise linear function
- XZ and YZ projections fitted separatly
- length of 3D track defines a range

Track Reconstruction Secondary Particle

- track is not a regular line
- fitted with a piecewise linear function
- XZ and YZ projections fitted separatly
- length of 3D track defines a range

Track Reconstruction

- an end point of the secondary track should match an end point of a primary one
- presence of secondary track is an additional discriminating variable
- reconstructed variables:
 - range (function of momentum)
 - secondary tracks
 - total charge
 - ratio of charge in the second part of the track over the first one (>1 for muons and pions, ~1 for electrons)

all the above variables contribute to PID and momentum identification

This algorithm is being implemented...

Electron-Muon Ranger (EMR), University of Geneva 38th MICE Collaboration Meeting, February 23, 2014 16/22

- digitization of geant4 simulation is implemented
- both electronics chains are simulated (64-ch. and 1-ch. PMT readouts including FEB/DBB and fADC boards)
- even with preliminary digitization parameters an agreement between simulation and data is exceptional
- digitization parameters will be studies/measured/tuned to match real hardware
- reconstruction is being implemented...