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Emittance Definitions
In the Muon world we usually use rms normalized emittances

ε = βγ
rms Phase Space Area

π
(1)

For transverse emittances the area is: θx vs x, or θy vs y. In
longitudinal: it is dp/p vs z, or E vs. t.
If x and px are both Gaussian and uncorrelated then

εx,y = (γβv)σθx,y
σx,y (m rad) (2)

εz = = (γβv)
σpz

p
σz (m rad) (3)

When xy symmetric we often write ε⊥ for εx = εy, and ε‖ for εz
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There are many other ε definitions
The above ’normalized’ emittances are conserved by simple accel-

eration. ’Un-normalized’ or ’geometric’ emittances without the βγ
in ε = (γβv)σθx,y

σx,y, fall with acceleration

εx,y(geometric) = σθx,y
σx,y

95% emittances, usually un-normalized, are widely used for pro-
tons, using areas that contain approximately 95% of Gaussian dis-
tributions and have the transverse values:

εx,y(95%) = 6 σθx,y
σx,y

Longitudinal emittances are often given with the dimensions En-
ergy × time

εz(Energy, time) = σE σt

And which convention is being used, is not always clear
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Cooling
For many applications it is desirable to reduce the emittance of a

beam, and many ways have been discovered, used, or planned to be
used (like our ionization cooling). An incomplete list:

• One (electron cooling) that uses interaction with a colder beam

• One ( Laser) that uses interactions with a cold laser

• Three (rf Stochastic, Optical Stochastic, and Coherent Electron)
that use a Maxwell Demons

• And two (synchrotron radiation and ionization cooling) that rely
on energy loss

In this lecture I will describe conceptually how they work. Tomorrow
we will look at ionization cooling in more detail

For more details and references ”try ’Handbook of Accelerator
Physics and Engineering’; Chao, Mess, Tigner, Zimmermann.
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Electron Cooling (G. I. Budker 1967)
Take a bowl of hot water and add cold marbles: the water is

cooled. Take a high emittance proton/ion beam and pass it down
a transport along with a cold electron beam traveling at the same
velocity, and the proton/anti-proton/ion beam will be cooled. The
interactions between them is Coulomb scattering.
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Laser Ion Cooling T. Haensch 1975
a) e.g. with one laser in a Ring

• At just the right, Doppler corrected (thus ion velocity dependent)
laser frequency: a laser photon is absorbed, the ion raised to a
higher unstable state, and the ion receives a forward kick.

• When the excitation spontaneously decays, photons are emitted
isotropically, leaving, the forward kick.

• If the laser frequency is scanned, the velocity distribution of ve-
locities can be ’bull-dozed’ into a single narrower spectrum
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a) e.g. with two lasers in a trap

• Two opposed lasers set just below the peak excitation frequency

• If the ion is stationary, forces ar balanced

• If moving towards laser A, its observed frequency from A is in-
creased, frequency from B decreased

• force from A increases, that from B decreases

• Sum of forces are to right and velocity corrected

• And vice versa

Sensitive to just a few m/sec Cools to very low temperatures
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Transverse rf Stochastic Cooling
(S. Van de Meer 1972)

If, particle by particle, we could determine a
transverse error, and then apply a deflection
field to correct it, the beam will be instantly
cooled.

Is this the unphysical ”Maxwell Demon”?
Yes/No, because a beam emittance is not
a thermal temperature. It only shares some
properties of one.
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What is ”Stochastic” about this ?

The band-width needed to determine the momentum of each par-
ticle in a useful beam, is way too high. The best we can do is
measure an error of a selected set of N out of a total NT , deter-
mined by a bandwidth W (s−1). The greater W , the smaller the
subset N .

And if we correct that subset’s displacement, then we reduce the
emittance of that subset by a small fraction dε/ε.

If for each turn that subset is different (good mixing), then the
emittance will be reduced again and again.

dε

ε
(per turn) =

1

N
N =

NT βvc

W S
t(per turn) =

S

βv c

where S is the ring circumference; giving a cooling rate:

dε/ε

dt
=

W

NT
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Longitudinal Cooling

Two methods:

The Palmer method uses a transverse
pickup in a region of dispersion and an
accelerator gap for energy correction.

The Thorndahl method is much more
elegant: a simple Schottky noise
pickup’s signal is differentiated and
fed to the accelerator placed where
the time of arrival depends on the par-
ticles energy.
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Optical Stochastic Cooling
(M. S. Mikhailichenko, M. S. Zolotorev 1993
Conceptually, this is Thorndahl longitudinal cooling, but the pickup

now is a magnetic wiggler, the signal is optical light, the amplifier
is a laser, and the kicker is a Free Electron Laser.

Transverse cooling is also possible with appropriate dispersions.

The bandwidth of a laser is many orders of magnitude higher than
an rf amplifier, so N is smaller and the cooling faster, but it appears
not fast enough for muons.
Not yet demonstrated, but planed experiment at Fermi Lab
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Coherent Electron Cooling CEC (V. Litvinenko)
Coherent Electron Cooling, like Optical Stochastic Cooling, should

have a huge bandwidth, but the signal now, instead of an electro-
magnetic wave, is the temporal makeup of an electron beam.

Both the pickup and the corrector are by electrostatic interactions
between the electron beam and the ion beam being cooled. As
in ’Electron Cooling’ the velocities of ions and the electron beam
must be the same. But these velocities do not have to be high, as
in Optical Stochastic Cooling, since it does not require synchrotron
radiation.
Not yet demonstrated. Experiment is planned at BNL’s RHIC
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Transverse Synchrotron Cooling (Damping)
A particle loses energy, and thus momentum, by synchrotron radi-

ation in a magnetic field. If the particle has a transverse component,
then that too is reduced. Subsequent rf acceleration restores the
longitudinal component, but leaves the reduction in the transverse
component.

The minimum emittance achieved is set by quantum fluctuations
in the amount of radiation emitted

13



Transverse Partition Functions

From the definition

ε = βγ σθ σx =
σp⊥σx

mc

Since the emitting radiation does not change the beam size σx:

∆ε

ε
=

∆p⊥
p⊥

=
∆p

p

Defining (we will see why later)

Jx =
∆ε/ε

∆p/p

We get
Jx = 1
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Longitudinal Partition Functions

Longitudinal cooling arises naturally because the synchrotron en-
ergy loss is proportional to γ2

From the definition

εz = βγ σp/p σz =
σEσt

mc
(4)

Since the radiation does not change a particles time t:
∆εz
εz

=
∆σE

∆E
and if

Jz =
∆εz/εz
∆E/E

(5)

since the energy loss ∝ E2, we get

Jz = 2 (6)

and J6(synchrotron) = Jx + Jy + Jz = 4 (7)
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Can one increase longitudinal cooling?

•One can increase the longitudinal
cooling using ”combined function”
magnets

• Plus dispersion so higher momen-
tum particles have higher y

• The fields are higher on that side,
causing higher radiation

• Reducing the energy spread further
and thus increasing Jz

This works, but always increases Jx, or Jy so that

J6 = Jx + Jy + Jz = 4 (8)

is maintained
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Transverse Ionization Cooling

As in Radiation Cooling, a particle loses energy, but instead of
by synchrotron radiation, it is by ionization loss passing through
material. The logic is the same: If the particle has a transverse
component, then that is reduced. Subsequent rf acceleration re-
stores the longitudinal component, but leaves the reduction in the
transverse component.

The minimum emittance achieved is now set by Coulomb scatter-
ing in the material, and this we will address in more detail later.
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Transverse Partition Functions

As for Radiation Cooling and the definition

ε = βγ σθ σx =
σp⊥σx

mc

And since the ionization does not change the beam size σx:

∆ε

ε
=

∆p⊥
p⊥

=
∆p

p

Defining

Jx =
∆ε/ε

∆p/p

As for synchrotron cooling, we get

Jx = Jy = 1 (9)
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Longitudinal Ionization Cooling

Again:

εz = βγ
σp

p
σz =

σEσt

mc
And ionization does not change time, so:

∆εz
εz

=
∆σE

∆E

and if Jz =
∆εz/εz
∆E/E

Jz =
∆εz
εz
∆E
E

=







d(dγ/ds)
dγ/γ











dγ
ds




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Longitudinal Partition Function

Jz is strongly negative at low energies (longitudinal heating), and
barely positive at energies above 300 MeV/c. Jz is now energy
dependent. In practice we cool at ≈ 130 MeV where is small but
negative Jz ≈ − 0.3, i.e. heating.

However, the 6D cooling is still strong J6 ≈ 1.7.
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Unlike synchrotron, emittance exchange needed even for stability
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Emittance exchange

Higher momentum muons pass through more material than lower.
Momentum spread and thus Longitudinal emittance is reduced. But
the transverse beam size is increased.

For equal partition and J6=1.7 we get Jx = Jy = Jz ≈ 0.6
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Summary of lecture I

• Many different cooling schemes

• All fascinating

• But muons decay requiring cooling to be very fast

• Only Ionization Cooling seems practical

• This is conceptually similar to Radiation Cooling

• But simple Ionization Cooling does not cool longitudinally

• Emittance Exchange is required

• Not yet demonstrated

• But MICE, even Stage IV, will do it

• MICE stage VI will do something else (next lecture)
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Emittances and Cooling
Lecture II: Ionization Cooling

MICE Collaboration Meeting
02/25/14

R. B. Palmer (BNL)

• Introduction

– β functions

– Solenoid focusing

– Canonical Angular momentum

• Transverse Cooling Formulae

• Cooling in long solenoids

• Periodic focusing

• Super FOFO

• MICE
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βx,y(Twiss) of Beam θx

x

For upright phase ellipse in θx vs x,

β⊥ =











width

height
of phase ellipse











=
σx

σθ
(10)

Then, using emittance definition:

σx =

√

√

√

√

√

√

√

√

ε⊥ β⊥
1

βvγ
true for any ellipse (11)

σθ =

√

√

√

√

√

√

√

√

ε⊥
β⊥

1

βvγ
only for upright ellipse (12)

When βx = βy I will often refer to them as β⊥
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Units

I like to use strict MKS units, but when E, p, or m appear,
add 1/e, c/e, or c2/e and put square brackets around them. The
bracketed values are now - in electron Volts:

[E/e]

[pc/e]

[mc2/e]

For instance the curvature k of a 100 MeV beam in a 10 T mag-
netic field is

k =
Bz c

[pc/e]
=

10 3 108

108 = 30 (m−1)
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Solenoid Focusing Entering a Solenoid
ra

d
iu

s
r

z

φ = 2π r
∫

B⊥ d`

φ = π r2 Bz

-5.0 -2.5 0.0 2.5 5.0

-2.5

0.0

2.5

Br

∆p⊥

∆[pc/e]⊥ =
∫

Br c dz =
Bz r c

2
(13)

So for a case with zero initial transverse momentum,

[pc/e]⊥ =
Bz r c

2
(14)

This azimuthal momentum, interacting with the axial field gen-
erated an inward focusing force. As r changes, the radial motion
interacting with Bz maintains equation 14.
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Canonical Angular momentum

If before entering a field, there is an initial ’Canonical’ angular
momentum [pc/e]⊥ can, then after entering the solenoid field:

[pc/e]⊥(1) = [pc/e]⊥ can +
Bz r c

2
In the absence of material, when the particle comes out of the

field, then there is a reverse angular kick and the angular momentum
reverts to the initial ’Canonical’ value.

[pc/e]⊥(2) =











[pc/e]⊥ can +
Bz r c

2











− Bz r c

2
= [pc/e]⊥(1)

When there is material inside the magnetic field, things get more
interesting More later

The σθs used to define β⊥ in eq. 10 are defined in the Canonical
frame
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Back to: Transverse Ionization Cooling

Cooling rate vs. Energy

eq. 2 εx,y = γβv σx,y σθx,y

If there is no Coulomb scattering, or other sources of emittance
heating, then σθ and σx,y are unchanged by energy loss, but p and
thus βγ are reduced. So the fractional cooling dε /ε is:

dε(cooling)

ε
=

dp

p
=

dE

E

1

β2
v

(15)

which, for a given energy change, favors cooling at low energy.
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Heating Terms

eq. 2 εx,y = γβv σx,y σθx,y

Between scatters the drifts conserves emittance (Liouiville).
When there is scattering, σx,y is conserved, but σθ is increased.

d(εx,y)2 = γ2β2
v σ2

x,yd(σ2
θ)

eq.11 2ε dε = γ2β2
v











εβ⊥
γβv











d(σ2
θ)

dε =
β⊥γβv

2
d(σ2

θ)

Rossi d(σ2
θ) ≈















14.1 106

[pc/e]βv















2
ds

LR

dε(heating) =
β⊥
γβ3

v
dE































14.1 106

2[mc2/e]µ















2
1

LR dE/ds
















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Minimum Emittance
Defining

C(mat,E) =
1

2















14.1 106

[mc2/e]µ)















2
1

LR dγ/ds
(16)

then
dε(heating)

ε
= dE

β⊥
εγβ3

v
C(mat,E)

Equating this with equation 15, for an equilibrium state

dE
1

β2
v E

= dE
β⊥

εγβ3
v

C(mat,E)

gives the equilibrium emittance without emittance exchange:

εx,y(min) =
β⊥
βv

C(mat,E) (17)

Or including possibility of emittance exchange:

εx,y(min) = Jx,y
β⊥
βv

C(mat,E) (18)
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Choice of Materials
At energies such as to give minimum ionization loss, the constant

Co for various materials are approximately:

C
o
n
sa

ta
n
t

C
(1

0−
4
)

Kinetic Energy (MeV)

Hydrogen

10.0 102 103 104
0

25

50

75
Lithiummaterial density dE/dx LR Co

kg/m3 MeV/m m 10−4

Liquid H2 71 28.7 8.65 38
Liquid He 125 24.2 7.55 51
LiH 820 159 0.971 61
Li 530 87.5 1.55 69
Be 1850 295 0.353 89
Al 2700 436 0.089 248

Liquid Hydrogen is the best material, even though it requires win-
dows made of Aluminum or other material which somewhat degrade
the performance.

Lower energies cool transverse emittance to lower emittances, but
longitudinal emittances rise rapidly and 6D cooling is impossible.
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Beam Divergence Angles

eq.12 σθ =
√

√

√

√

√

√

√

ε⊥
β⊥ βvγ

so, from equation 17: ε(min) = β⊥ C(mat,E)/βv

σθ =

√

√

√

√

√

√

√

√

√

ε⊥
β⊥ βvγ

β⊥ C(mat,E)

ε(min) βv
=

√

√

√

√

√

√

√

√

√











ε

ε(min)











C(mat,E)

β2
vγ

Independent of the emittance !

and for ε/ε(min) = 2, giving 50 % of maximum cooling rate (see
below), and an aperture at 3 σ, the angular aperture at the absorber
Aθ must be

Aθ ≥ 3
√

2

√

√

√

√

√

√

√

√

√

C(mat,E)

β2
vγ

(19)

For 130 MeV: H2: A ≥ 0.25 LiH: A ≥ 0.32 Be: A ≥ 0.38

Huge required acceptances → preference for H2 at all emittances
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Rate of Cooling

As one approaches the minimum emittance, the cooling rate will
decrease:

dεx,y

εx,y
=





1 − εmin

ε





 Jx,y
dp

p
(20)

Using an ε >> ε(min) is impractical because of the excessive
required angular acceptance

Using ε(min) → ε implies slow cooling with resulting losses to
decay

Thus efficient cooling requires a ’tapered’ sequence of ’stages’
with ever decreasing β⊥s to keep ε/ε(min) ≈ 2
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Cooling with Long Solenoid Focusing

In a solenoid with axial field Bsol

β⊥ =
2 [pc/e]

c Bsol

with no emittance exchange:

εx,y(min) = C(mat,E)
2 γ [mc2/e]µ

Bsol c
(21)

The minimum emittance depends on Bz. Can we do better with-
out raising it further?
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Decreasing β⊥ in Solenoids by adding periodicity
A

x
ia

l
B

(T
)

Length (m)
0.0 1.0 2.0 3.0
0

1

2

3

4.0 5.0

Strong periodicity FOFO

Weak periodicity

b
e
ta

(m
)

Momentum (GeV/c)

Solenoid

0.15 0.20 0.25

2

4

0.1

2

4

1.0
Weak
FOFO

• Resonances introduced

• Betas reduced locally,

• But momentum accep-
tance small
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Super FOFO (Sessler)
Double periodicity

b
e
ta

(m
)

momentum (GeV/c)

Solenoid

0.150 0.175 0.200 0.225 0.250 0.275

2
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5

0.1
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3
4

1.0

FOFO
Super FOFO

• Beta lower over finite mo-
mentum range

• Beta lower by about 1/2
solenoid

Solenoid focusing is independent of sign
Lowest β⊥ when ”non-flip” as shown
But this has angular momentum, and other, problems
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Angular Momentum with an Absorber
Assuming that initial Canonical angular momentum is zero, then

in a focusing field Bz, the physical angular momentum will be:

eq.14 [pc/e]φ =
c Bz r

2

With material reducing all momenta by a factor K, there is cooling,
and the physical angular momentum is also reduced:

[pc/e]φ(after absorber) = K
c Bz r

2

When a muon leaves the field, and its average angular momentum
is also its Canonical value:

[pc/e]φ(canonical) = K
c Bz r

2
− c Bz r

2
=

c Bz r

2
(K− 1) < 0

And it will continue to fall (or rise if B neg) with more cooling
One must reverse (flip) the field a finite number of times.
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Lattices with many ”flips”
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Lattices with many ”flips”
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SFOFO Lattice Engineering
Study 2 at Start of Cooling

• I think you have seen this before!

• It is the lattice to be tested in Muon Ionization Cooling Experi-
ment (MICE) at RAL

• This is much more than a demonstration of Ionization Cooling

• It is a demonstration of a usable technology
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Conclusion

• A particle entering a solenoid receives an azimuthal kick, but its
’Canonical’ angular momentum does not change

• Focusing is generated by the interaction of this additional az-
imuthal momentum and the axial field

• Passing through an absorber cools transverse momenta, but Coulomb
scattering heats them

• The minimum emittance is proportional to the beam β⊥ at the
absorber, and is least with a hydrogen absorber

• Beam β⊥ can be less in a periodic lattice than in uniform Bz

• A bi-periodic lattice can have a wider momentum acceptance

• An alternating field lattice avoids accumulation of Canonical an-
gular momenta

• MICE is demonstrating cooling in such a lattice
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