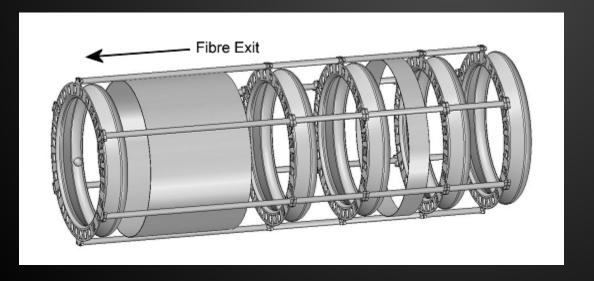
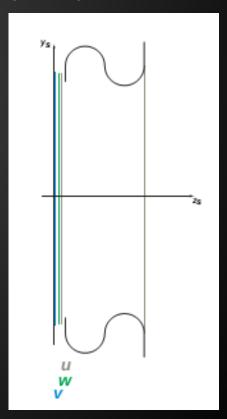


Tracker MC

Christopher Heidt
University of California Riverside
MICE CM 38
Feb 23 2014

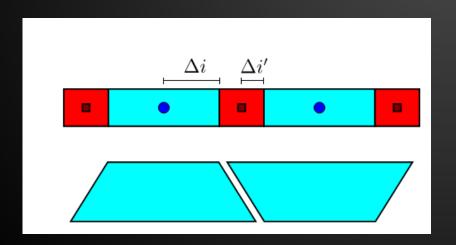
Outline

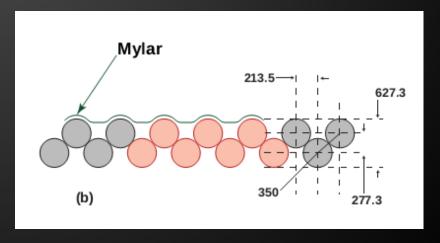

- Background
 - How do we model the tracker
 - How do we model hits
 - The digitization process
 - Results
- New Additions
 - Bridging MC to recon
 - Modeling VLPC noise
- New Idea
 - Individual channel configurations


Background

How do we model the tracker?

Stations/Trackers


- Station models are defined as an cylinder containing three empty planes, which will later be filled, separated by thin mylar layers
- Looking into adding carbon fiber station bodies
- No current plans to add scintillating fiber tails, connectors, light guides, or the rest of the station body



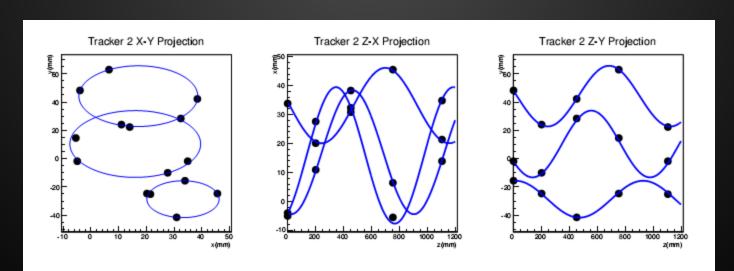
How do we model the tracker

- Planes
 - Initialized as thin cylinders with an active radius of 16cm
 - Fibers place one by one along diameter of plane
 - length of fiber based on placement of fiber
 - depth of fiber alternated between -0.5r and 0.5r
 - Contrasted to earlier G4Mice model which modeled fibers and overlapping/non-overlapping rectangles
- Both stations and planes can be rotated along x,y,z axis

How do we model hits

- Hit Generation
 - Beam (PID, energy, number of particles) generated outside of tracker MC
 - When particle interacts with scintillating fiber a certain amount of energy is deposited
 - Value determined by Geant4 libraries
 - Energy value is recorded along with position, momentum, and id (tracker,station,plane,fiber)

The digitization process


- The number of PE in a hit is determined by energy deposited
 - Energy is multiplied by a figure based upon physical factors of the fibers
 - Channel number is determined using fiber number
 - PEs from hits in the same tracker, station, plane, and channel in an event are summed

The digitization process

- ADC resolution simulated
 - Raw NPE checked against ADC saturation
 - Gaussian smearing based upon ADC resolution applied
- Results stored as digits to be passed to recon
 - MC digits should be identical to that produced from data

Results

- Used in pattern recognition and Kalman development and testing
 - Used to test code development
 - With field and without
- Will provide even more use with Trigger and RFCC MC modules

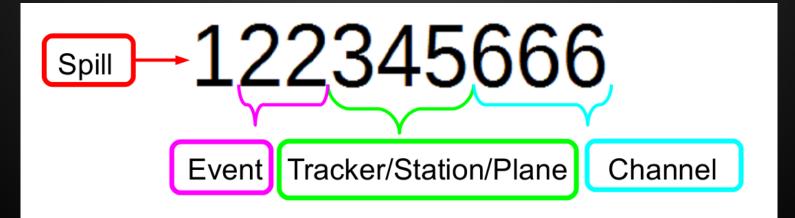
New Additions

Modeling noise from VLPC

Dark count present in VLPC

- Originates from thermally excited electrons causing a cascade event
- Present in ~1%/trigger/channel usually on the order of 1 PE
- Described by Poisson distribution

Modeled in the MC


- At the start of each event channels are check for presence of noise
- Random value fed to Poisson function to determine integer magnitude of noise
- If present noise is saved in a format identical to digits but in its own branch

Modeling noise from VLPC

- Results combined with digits
 - MC digits compared to noise to find any possible overlap
 - PE of overlapping events are summed
 - Events that do not overlap are simply added to digit branch
 - Final results are sent for ADC simulation for gaussian smearing
 - End results produce digits that can not distinguish noise from MC
- Same framework can be used to add in crosstalk noise from ADC/TDC

Bridging MC to Recon

- Unique id number created that correlates hits with digits they create
 - Allows for us to follow chain hits -> digits -> clusters -> space points -> track points
 - Tool set built to run outside of MC, results stored in memory not to JSON
- Will be used in testing track finding algorithms
 - Work being done now in writing scripts to use this

New Idea

Individual Channel Configurations

- Individual calibrations
 - Write calibrations to separate file
 - Read in at start of run
 - Referenced at digitization level
- Allows:
 - Modeling dead fibers, different light yields
 - Channel noise, settings
 - ADC resolutions
- Does not Change:
 - Fiber definitions

Conclusion

- Current model gives us an accurate but general view of tracker
- Framework for noise in tracker electronics in place and VLPC noise in place
- MC is being used to aid in code development
- With more data we can be more realistic