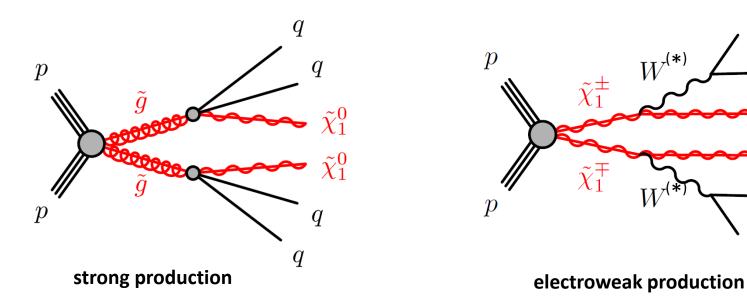

Dark Matter Beam & Detector

David Côté (UTA)

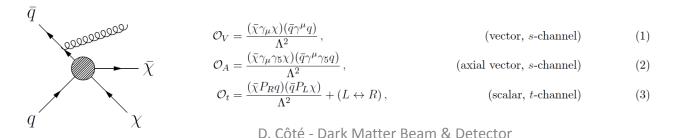
Motivation

- Dark Matter is arguably the most convincing evidence and the most important application of BSM physics
 - controlled DM production and detection under laboratory conditions would be a major breakthrough!
- Motivations for a dedicated DM experiment at FCC
 - next step if compelling signal is observed at LHC Run-2
 - scenarios where dark matter is invisible for ATLAS & CMS but visible with a dedicated DM detector
 - bread & butter neutrino physics in the TeV regime (?)

Overview


- dark matter production
 - DM flux in explicit SUSY scenario
 - symmetric vs asymmetric colliders
- dark matter detection
 - inelastic q χ and q ν cross-sections
 - expected signal yields
 - neutrino background rejection

Update from initial presentation on Nov 18th : <u>https://indico.cern.ch/conferenceDisplay.py?confId=283785</u>


Thanks to George Azuelos and Zach Marshall for help with MadGraph+Pythia!!

Dark Matter production at pp collider

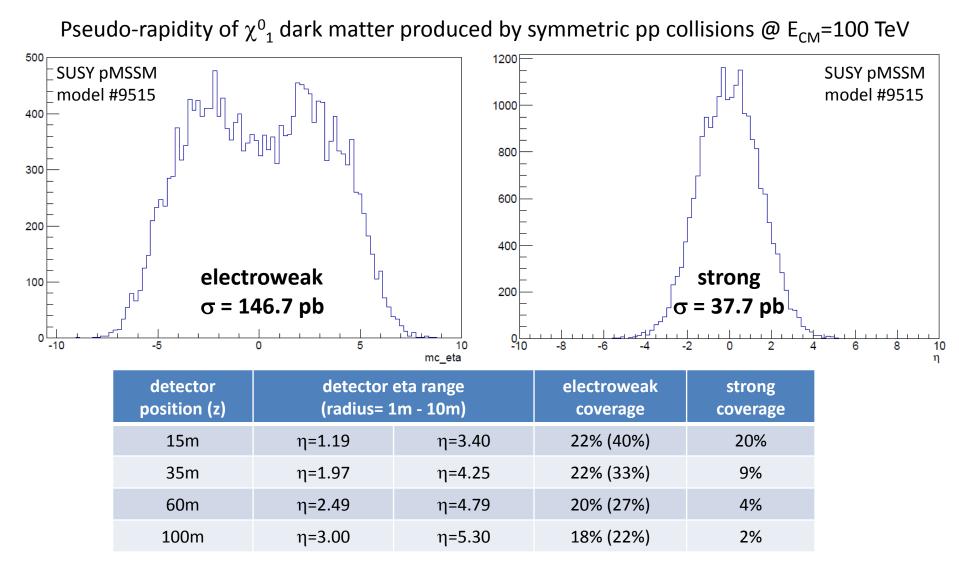
For today, assuming: WIMP dark matter = SUSY neutralino (χ^{0}_{1})

More DM models shall be considered (e.g. effective contact operators)

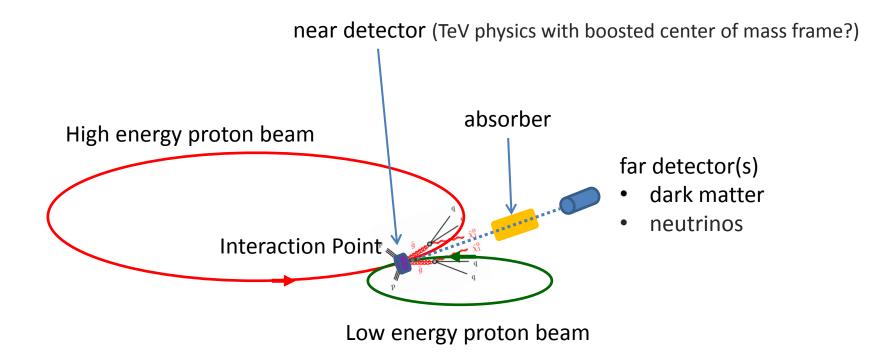
 \mathcal{V}

Explicit benchmark SUSY scenario

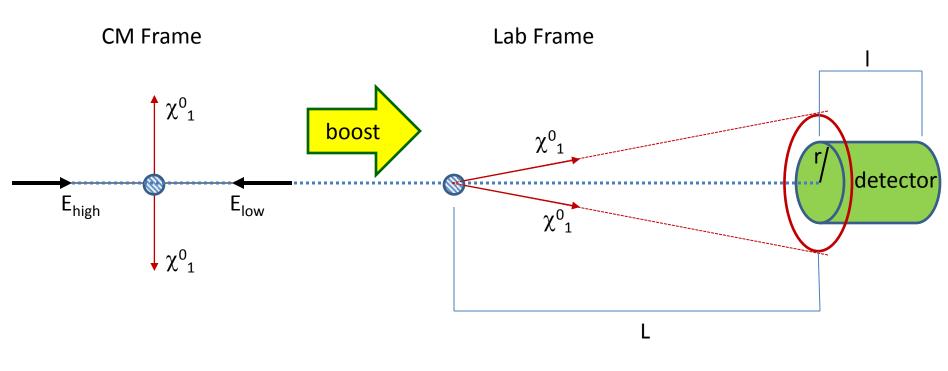
- Model #9515 from pMSSM scan [arXiv:1307.8444]
 - survive all experimental constraints to date
 - dark matter relic density compatible with WMAP
 - "Well-Tempered" bino-higgsino scenario
 - fine-tuning < 1% (i.e. "natural" SUSY)</p>
 - dominated by electroweak production
 - probably discoverable in Run-2
 - m_N1 = 79.3 GeV
 - m_C1 = 105.6 GeV
 - m_N2 = 118.4 GeV
 - m_N3 = 138.9 GeV


Alternative models dominated by strong production will also be considered for next presentation...

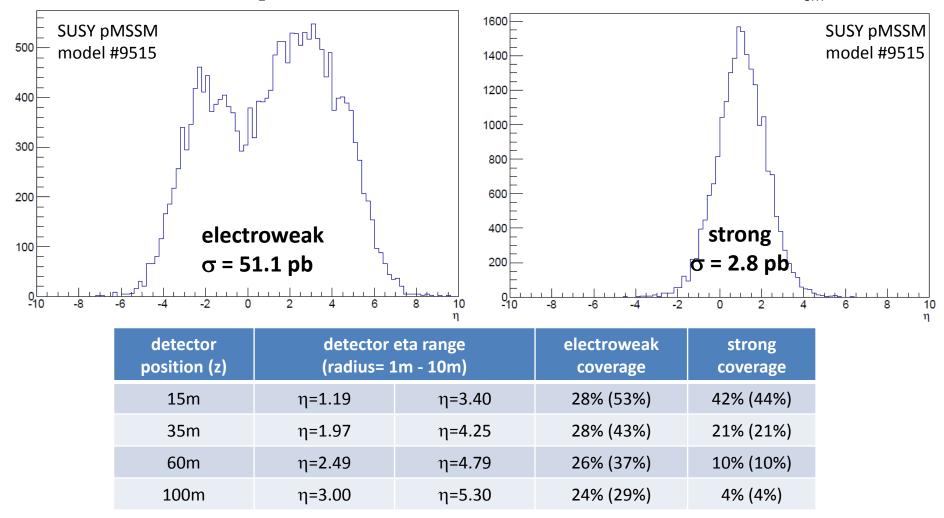
Collider Configuration Options


	E_{high}	E_{low}	E_{cm}
	[TeV]	[TeV]	[TeV]
$FHC \rightarrow Fixed Target$	50	0.001	0.3
$\mathrm{FHC} \leftrightarrow \mathrm{LHC}$	50	7.000	37.4
$FHC \leftrightarrow Super-SPS$	50	3.000	24.5
$FHC \leftrightarrow Super-SPS$	50	3.000	24.5
$\mathrm{FHC} \leftrightarrow \mathrm{FHC}$	50	50	100
$\mathrm{FHC} \leftrightarrow \mathrm{FHC}$	50	50	100

- Fixed Target has insufficient E_{cm}
- Symmetric or Asymmetric colliders look promising


Symmetric collider

Asymmetric Collider


Boosted center of mass frame

Angular coverage depends on boost (E_{high}, E_{low}), distance (L) and radius (r). Detection efficiency depends on depth (I).

Asymmetric collider: FHC↔LHC

Pseudo-rapidity of χ_{1}^{0} dark matter produced by asymmetric pp collisions @ E_{CM}=37.4 TeV

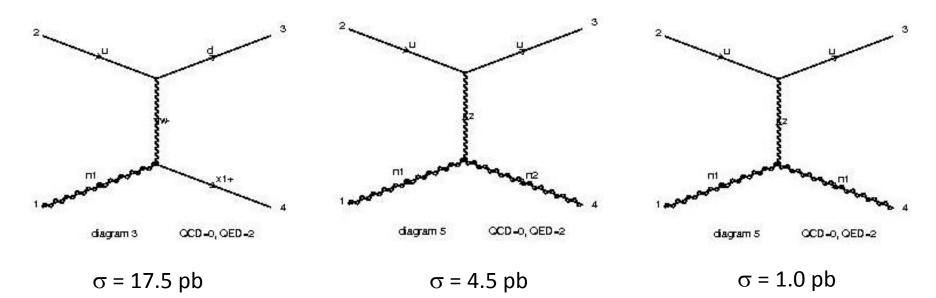
Asymmetric vs Symmetric

Flux on detector for \mathcal{K} =10³⁴ cm⁻²s⁻¹ and pMSSM model #9515

	electroweak production		strong production	
	symmetric FHC↔FHC	asymmetric FHC↔LHC	symmetric FHC↔FHC	asymmetric FHC↔LHC
cross-section	147 pb	51 pb	38 pb	3 pb
neutralino flux	2.9 χ/s	1.0 χ/s	0.8 χ/s	0.06 χ/s
coverage	18-40%	24-53%	2-20%	4-44%
flux on detector	0.5-1.2 χ/s	0.2-0.5 χ/s	0.02-0.2 χ/s	0.03 – 0.3 χ/s

Note: the WIMP-detector cross-section downstream has a strong energy dependence which is not yet taken into account.

 \Rightarrow this will probably favor an asymmetric configuration


Dark Matter Detector in the TeV regime...

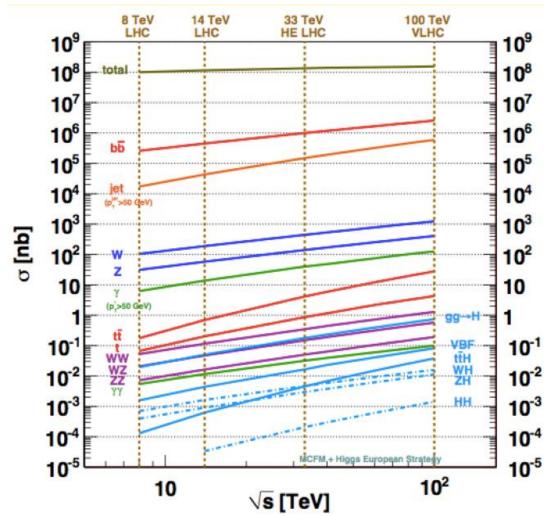
WIMP-nucleon cross-section @ keV

arXiv:1305.6921 10-3 Higgsino Bino Wino Bino Wino Hiaasino **Bino-Wino** Wino-Higgsino **Bino-Higgsino** Bino-Wino Wino-Higgsino 10^{-1} Bino-Higgsino 10⁻⁵ Mixed Mixed 10⁻³ XENON100 10-7 COUPP500 10⁻⁵ 10⁻⁹ $R \times \sigma_{SI}$ (pb) $R \times \sigma_{SD}$ (pb) 10⁻⁷ 10⁻¹¹ 10⁻⁹ 10⁻¹³ 10⁻¹¹ 10⁻¹⁵ 10⁻¹⁷ 10⁻¹³ 10⁻¹⁹ 10⁻¹⁵ 10-21 10⁻¹⁷ 10³ 10² 10³ 10^{2} $m_{ ilde{\chi}_0}$ (GeV) $m_{ ilde{\chi}_0}$ (GeV)

• WIMP interactions provoke nucleus recoils in the keV regime, with σ < 10⁻³ pb

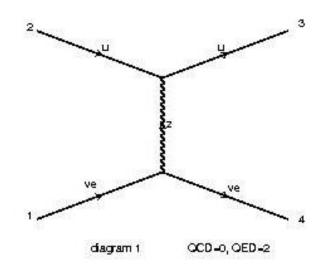
WIMP-nucleon cross-section @ TeV

pMSSM model #9515 at 43 TeV (FHC↔LHC)


Parton interactions leaving W^(*)+jet and Z^(*)+jet signatures!

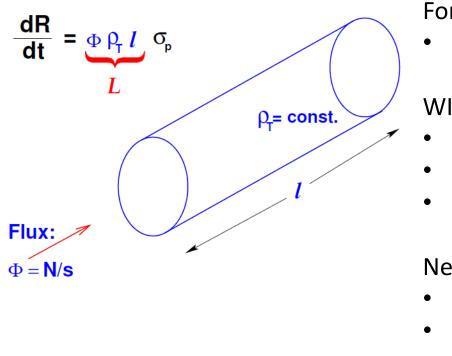
- larger (energy-dependent) cross-sections
- completely different detector design

Neutrino Flux


The inclusive neutrino cross-section is basically equal to the total pp cross-section:

- $\sigma_v = \sim 10^8 \text{ nb}$
- Flux for $\mathcal{K}=10^{34} \text{ cm}^{-2}\text{s}^{-1}$:
 - ~10¹² neutrinos/s

Neutrino interaction with detector


- Cross-sections @ 43 TeV (FHC↔LHC)
 - $-v_{e}$: 46.0 pb $-v_{\mu}$: 46.0 pb $-v_{\tau}$: 47.0 pb - anti- v_{e} : 48.8 pb - anti- v_{μ} : 48.8 pb
 - anti- v_{τ} : 46.3 pb

Energy dependence of WIMP & neutrino interactions with detector

- WIMP (model #9515):
 - $-\sigma$ = 23 @ 43 TeV (asymmetric FHC↔LHC)
 - $-\sigma$ = 11 pb @ 27 TeV
 - $-\sigma$ = 2 pb @ 12 TeV
 - $-\sigma$ = 10⁻⁷ pb @ 2 TeV (symmetric FHC)
- Electron neutrino (SM):
 - $-\sigma$ = 46 @ 43 TeV (asymmetric FHC \leftrightarrow LHC)
 - $-\sigma$ = 30 pb @ 27 TeV
 - $-\sigma$ = 12 pb @ 12 TeV
 - $-\sigma$ = 0.08 pb @ 2 TeV (symmetric FHC)

Interaction Rate

For 10m detector made of copper: • $\rho = 5.4 \times 10^{24}$ nucleons cm⁻³

WIMP (model #9515) @ FHC↔LHC

- $\Phi = 0.5 \text{ s}^{-1}$
- σ = 23 pb
- rate = 2 hits/year

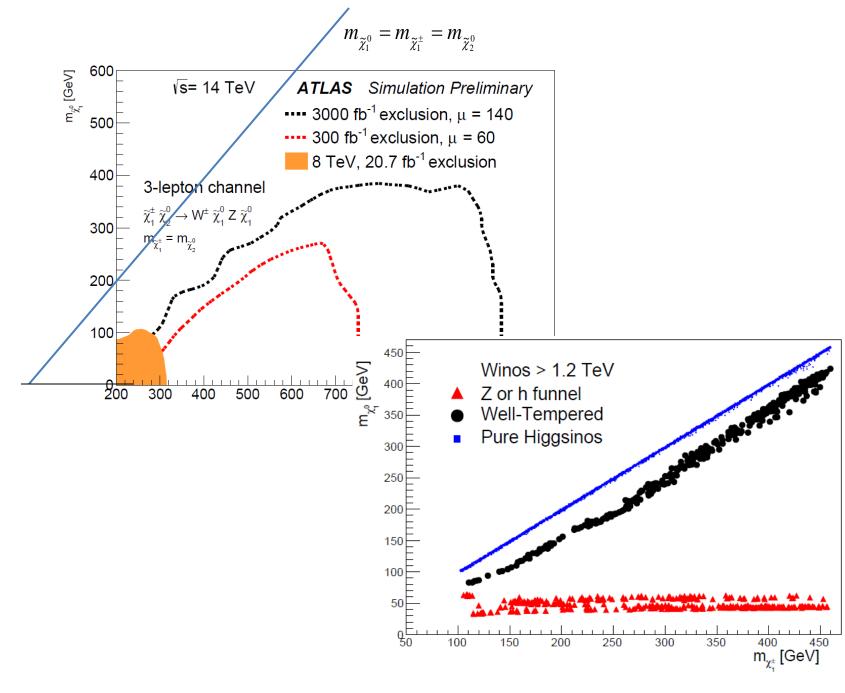
Neutrinos @ FHC↔LHC

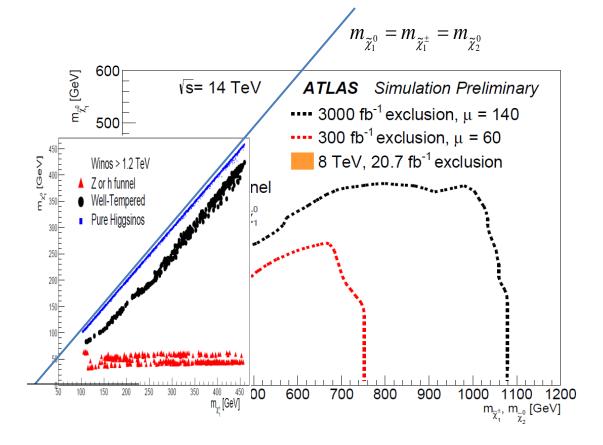
- Φ = 10¹² s⁻¹
- σ = 47 pb
- rate = ~200k hits/second (?!)

To-do:

- consider different SUSY model with much stronger production cross-section
- in any case, neutrino background will be overwhelming!
 - \Rightarrow can we exploit it for neutrino physics?

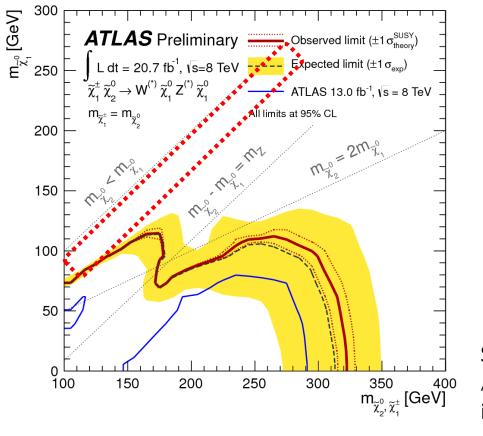
Thoughts about detector requirements

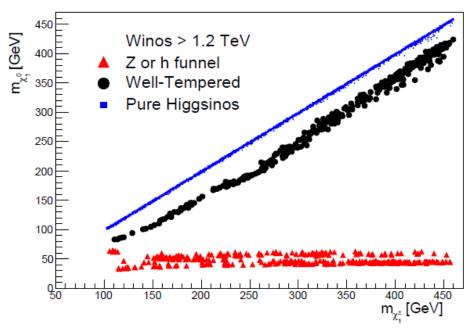

- Didn't spend enough time on this yet...
- Detector will need to have:
 - largest amount of material to increase WIMP rate
 - largest possible surface to increase geometric coverage
 - ability to identify signal jets
- WIMP vs neutrino separation will be challenging
 - identify WIMP from unique Z* and W* signature
 - maybe use time-of-flight information?
 - for neutralino masses of 50 GeV 1 TeV:
 - $\Delta_{TOF}(v,\chi) = 0.1 45$ picosecond for distance of 60 meters
 - $\Delta_{TOF}(v,\chi) = 1.9 755$ picosecond for distance of 1000 meters


Summary & Outlook

- Started to explore the concept of Dark Matter Beam experiments in the context of FHC
 - symmetric or asymmetric colliders are compared
 - large neutrino flux: interesting study for itself?
 - used an explicit benchmark SUSY model
 - getting sufficient WIMP flux is challenging
 - more models will be studied
 - parton interaction of WIMP & ν with detector
 - strong energy dependence of the cross-section
 - neutrino: jet signature
 - WIMP: W*+jet and Z*+jet signature

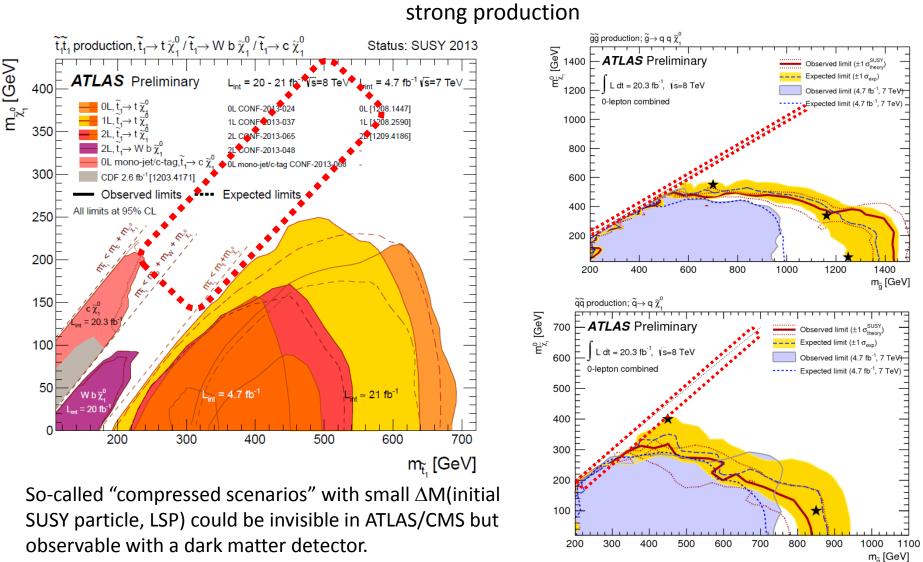
a new type of dark matter detector design is required


Backup Material



"Invisible" SUSY scenarios

electroweak production



So-called "compressed scenarios" with small Δ M(initial SUSY particle, LSP) could be invisible in ATLAS/CMS but observable with a dark matter detector.

*limits assume largest (pure Wino) cross-section

"Invisible" SUSY scenarios

*limits assume 100% Branching Fraction