Ions at the Future Hadron Collider

Urs Achim Wiedemann CERN PH-TH

This is a report on:

- how we have started to organize work within the heavy ion communitytowards the FHC project
- first physics considerations/ directions to explore

1st preparatory meeting on 16/17 Dec 2013 @ CERN organized by A. Dainese, S. Masciocchi, UAW https://indico.cern.ch/conferenceTimeTable.py?confld=288576#20131216

Topics discussed:

-First look at FHC operations with heavy ions (M. Schaumann, J. Jowett)

-Physics:

- Hard and elmag. probes in A+A (N. Armesto, C. Salgado)
- Soft probes in A+A
 - (T. Pierog, A. Andronic)
- Small-x physics/ saturation in p+A (M. v. Leeuwen, UAW)
- Others: ultraperipheral collisions, cosmic rays (D. D'Enterria)

-Organization of work

Heavy Ion Operations at a VHE-LHC

• see slides of M. Schaumann

https://indico.cern.ch/getFile.py/access?contribId=0&resId=1&materiaIId=slides&confId=288576

Basic considerations for physics studies

First estimates:

https://indico.cern.ch/getFile.py/access?contribId=0&resId=1&materialId=slides&confId=288576

TABLE 1. Peak luminosity and Integrated luminosity per month of running.

	LHC Run 2 [1]	LHC after LS2 [1]	FHC [2]
Pb–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{27}	$5 imes 10^{27}$	13×10^{27}
Pb–Pb L_{int} / month (nb ⁻¹)	0.8	1	5
p–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{29}	t.b.d.	$3.5 imes10^{30}$
p–Pb $L_{\rm int}~({\rm nb}^{-1})$	80	t.b.d.	1000

Heavy Ion Operations – further comments/questions

- M Schaumann emphasized that machine parameters used currently are from a first personal look
 - values not yet approved by, study not yet fully coordinated within by BE department

How to improve this situation?

• Will CDR planning of FHC and injectors aim at being compatible with a possible operation in A+A and p+A mode?

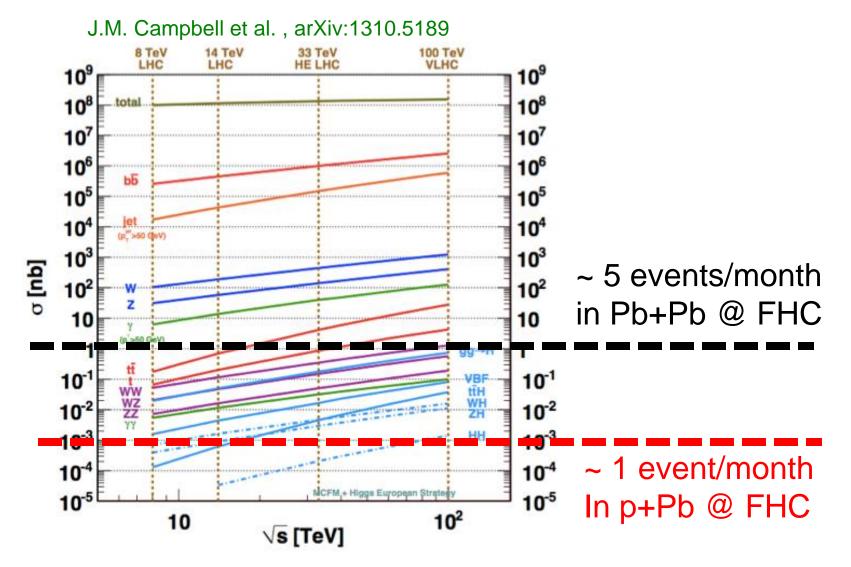
How/ on what level can one ensure that it is?

Soft physics in A+A

Basic motivation:

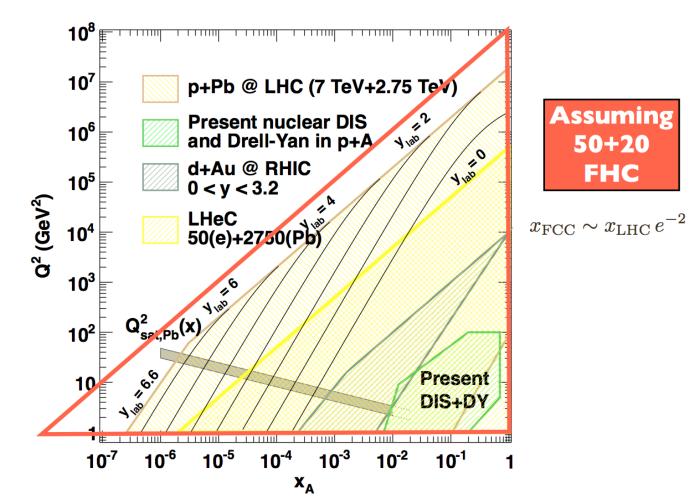
Increasing cms energy => <u>denser</u> initial system => <u>longer</u> lifetime => <u>bigger</u> spatial extension => <u>stronger</u> collective phenomena

- -To frame discussion of physics opportunities, start with simple estimates of Pb-Pb collision properties
- -Physics that comes into experimental reach: thermal charm, high-multiplicity events (in small systems, for EbyE analysis),


TABLE 2. Pb–Pb collisions at 2.76, 5.5 (extr) and 39 (extr) TeV.

Quantity	Pb–Pb 2.76 TeV	Pb-Pb 5.5 TeV	Pb-Pb 39 TeV
$dN_{\rm ch}/d\eta$ at $\eta = 0$	1600	2000	3600
Total $N_{\rm ch}$	17000	23000	50000
$\mathrm{d}E_{\mathrm{T}}/\mathrm{d}\eta$ at $\eta=0$	$2 \mathrm{TeV}$	$2.6 { m TeV}$	$5.8 { m TeV}$
BE homogeneity volume	$5000 \ {\rm fm}^3$	$6200~{ m fm}^3$	$11000 \ {\rm fm}^3$
BE decoupling time	$10 \; \mathrm{fm}/c$	$11 \; { m fm}/c$	$13~{ m fm}/c$
T at $\tau = 1 \text{ fm}/c$	$280 { m MeV}$	$300 { m MeV}$	$365 { m MeV}$
$\epsilon ext{ at } \tau = 1 ext{ fm/}c$	$12 \ { m GeV/fm^3}$	16 GeV/fm^3	35 GeV/fm^3
x_2 at $y = 0$ vs. Q^2	$Q({ m GeV})4 imes10^{-4}$	$Q({ m GeV})2 imes10^{-4}$	$Q({ m GeV})3 imes10^{-5}$
x_2 at $y = 4$ vs. Q^2	$Q({ m GeV})8 imes10^{-6}$	$Q ({ m GeV}) 4 imes 10^{-6}$	$Q({ m GeV})6 imes 10^{-7}$
x_2 at $y = 6$ vs. Q^2	$Q ({ m GeV}) 1 imes 10^{-6}$	Q (GeV) $5 imes 10^{-7}$	$Q({ m GeV})8 imes10^{-8}$

Hard Probes in A+A


Basic questions:

What can we learn beyond LHC(5.5 TeV) by embedding rare hard probes in A+A (and p+A)?

Small-x / saturation physics

- Access regime of non-linear small-x evolution, Q_{sat} is very large (A-dependence enhances non-linearities)
- Constrain npdfs, (test their process independence) (this is crucial input for phenomenology of A+A)

- Clearly, work is ahead of us.
- We specified groups looking at different physics topics
 - soft physics (current contact Urs Wiedemann)
 - hard probes (contact A. Dainese, C. Roland, C. Salgado)
 - small-x (contact N. Armesto, M.v. Leeuwen)
 - UPC/others (contact D. d'Enterria)
- Next Meeting on 29 January at CERN
- Next aim: Input into Geneva kick-off meeting:
 - one talk on machine (in session on hadron collider design?)
 - one talk on physics considerations (in session on hadron physics?)