
Functional descriptionFunctional description

Detailed view of the system
Status and features

Castor Readiness Review – June 2006

Giuseppe Lo Presti, Olof Bärring
CERN / IT

Giuseppe LoPresti (IT/FIO/FD) 2

OutlineOutline

Detailed view of the architecture

Lifecycle of a GET and a PUT request

Description and status of the components

Main daemons

Diskserver related

Central services

Tape related

Tape migration and recall

Workflow details

Giuseppe LoPresti (IT/FIO/FD) 3

OutlineOutline

Detailed view of the architecture

Lifecycle of a GET and a PUT request

Description and status of the components

Main daemons

Diskserver related

Central services

Tape related

Tape migration and recall

Workflow details

Giuseppe LoPresti (IT/FIO/FD) 4

Tape archive
subsystem

Castor 2 ArchitectureCastor 2 Architecture

Disk cache
subsystem

Client

Central servicesStager logic

From the “simple” view …

Giuseppe LoPresti (IT/FIO/FD) 5

Castor 2 ArchitectureCastor 2 Architecture

Tape Servers Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

Centra
l

Centra
l Services

Services

Disk cache
Disk cache subsystem

subsystem

Tape Tape archive
archive subsystem

subsystem

… to a more detailed one

Giuseppe LoPresti (IT/FIO/FD) 6

Lifecycle of a GET + recallLifecycle of a GET + recall

1. Client connects to the RH

2. RH stores the request into the db

3. Stager polls the db and checks for file availability

4. If the file is not available, the recall process is activated

5. Once the file is available, stager asks the scheduler to
schedule the access to the file

6. Client gets a callback and can initiate the transfer

The commandline is stager_get

Giuseppe LoPresti (IT/FIO/FD) 7

stager_get (1)stager_get (1)

Tape Servers Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

Giuseppe LoPresti (IT/FIO/FD) 8

stager_get (2)stager_get (2)

Tape Servers Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

MigHunter

GC

RTCPClientD

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is not available, it creates a DiskCopy

in WAITTAPERECALL

Giuseppe LoPresti (IT/FIO/FD) 9

stager_get (3)stager_get (3)

Client

StagerJob

NameServer

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
ov

er

RTCPClientD

DB

VMGR

• rtcpClientd polls the DB to get diskCopies in WAITTAPERECALL
• It organizes the recall of the data but the target filesystem is not yet selected

Tape Servers Ta
pe

D
ae

m
on recaller

Giuseppe LoPresti (IT/FIO/FD) 10

stager_get (4)stager_get (4)

Client

StagerJob

NameServer

Scheduler

MigHunter

GC

RTCPD
VDQM

Disk Servers

Mover

M
ov

er

RTCPClientD

DB

VMGR

Tape Servers Ta
pe

D
ae

m
on

R
H

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

RR

• recaller sends a request to the stager in order to know where to put the file
• the request goes through the usual way: Request Handler, DB,

stager (job service), Request Replier

recaller

Giuseppe LoPresti (IT/FIO/FD) 11

stager_get (5)stager_get (5)

Client

StagerJob

NameServer

VDQM

VMGR

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

Tape Servers Ta
pe

D
ae

m
on

RTCPD

Disk Servers

Mover

M
ov

er

RTCPClientD

DB

• rtcpd transfers the data from the tape to the selected filesystem
• the DB is updated with the new file size and position
• the original subrequest is set to RESTART status

recaller

Giuseppe LoPresti (IT/FIO/FD) 12

stager_get (6)stager_get (6)

Tape Servers Ta
pe

D
ae

m
on

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It checks for file availability
• The file is available, it calls the scheduler through the

RMMaster to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

Scheduler

Giuseppe LoPresti (IT/FIO/FD) 13

stager_get (7)stager_get (7)

Tape Servers Ta
pe

D
ae

m
on

RTCPD

NameServer

VDQM

VMGR

R
H Scheduler DB

Svc
Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
ov

er
RR

• the StagerJob launches the right mover corresponding to the client request
(note that the scheduler takes available movers into account)
• it answers to the client, giving to it the machine and port where to contact
the mover

• data is transfered
• DB is updated

DB

Giuseppe LoPresti (IT/FIO/FD) 14

Lifecycle of a PUT + migrationLifecycle of a PUT + migration

1. Client connects to the RH

2. RH stores the request into the db

3. Stager polls the db and looks for a candidate filesystem
for the transfer

4. Client gets a callback and can initiate the transfer

5. After the transfer is completed, migration to tape is
performed

The commandline is stager_put

Giuseppe LoPresti (IT/FIO/FD) 15

stager_put (1)stager_put (1)

Tape Servers Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

DB

• Client opens temporary port for receiving the response
• Client sends its request to RH
• RH stores request into the DB

Giuseppe LoPresti (IT/FIO/FD) 16

stager_put (2)stager_put (2)

Tape Servers Ta
pe

D
ae

m
on

Client

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

MigHunter

GC

RTCPClientD

DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

DB

• Stager polls the DB to get the request
• It calls the scheduler through the RMMaster to schedule the I/O
• The scheduler launches a StagerJob

StagerJob

Scheduler

Giuseppe LoPresti (IT/FIO/FD) 17

stager_put (3)stager_put (3)

Tape Servers Ta
pe

D
ae

m
on

RTCPD

NameServer

VDQM

VMGR

R
H Scheduler DB

Svc
Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPClientD

Client

StagerJob

Disk Servers

Mover

M
ov

er
RR

• the StagerJob launches the right mover corresponding to the client request
(note that the scheduler takes available movers into account)
• it answers to the client, giving to it the machine and port where to contact
the mover

• data is transferred
• DB is updated with the file size and the diskcopy is set in CANBEMIGR
and one or many TapeCopies are created

DB

Giuseppe LoPresti (IT/FIO/FD) 18

stager_put (4)stager_put (4)

Tape Servers Ta
pe

D
ae

m
on

Client

StagerJob

RTCPD

NameServer

VDQM

VMGR

Disk Servers

Mover

M
ov

er

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

GC

RTCPClientD

MigHunter

DB

• thanks to a MigHunter, the new tapecopy is attached to the streams
it can belong to (depending on tapepools, svcclasses, ...)

Giuseppe LoPresti (IT/FIO/FD) 19

stager_put (5)stager_put (5)

Client

StagerJob

NameServer

R
H

RR

Scheduler DB
Svc

Job
Svc

Qry
Svc

Error
Svc

Stager

MigHunter

GC

RTCPD
VDQM

DB

VMGR

• rtcpclientd will launch a migrator
• this one asks the DB for the next migration candidate
• the DB takes the best candidate in the stream (based on filesystems availability)
• the file is written to tape and the DB updated

Tape Servers Ta
pe

D
ae

m
on

Disk Servers

Mover

M
ov

er

RTCPClientD
migrator

Giuseppe LoPresti (IT/FIO/FD) 20

OutlineOutline

Detailed view of the architecture

Lifecycle of a GET and a PUT request

Description and status of the components

Main daemons

Diskserver related

Central services

Tape related

Tape migration and recall

Workflow details

Giuseppe LoPresti (IT/FIO/FD) 21

Detailed picture of CASTORDetailed picture of CASTOR

Giuseppe LoPresti (IT/FIO/FD) 22

Status of all system componentsStatus of all system components

Request Handler

Stager

RMMaster & RMNode

Distributed Logging Facility

External plugins (LSF, expertd)

gcDaemon

Central services (NameServer, VDQM, VMGR, CUPV)

Tape part (MigHunter, migrator/recaller, rtcopy,
rtcpclientd)

Giuseppe LoPresti (IT/FIO/FD) 23

RequestRequest HandlerHandler

Scope
Stores incoming requests into the DB

Features
Very lightweight
Allows for request throttling

Maturity
Production, no changes since mid 2005

Implementation
Fully C++
Usage of the internal DB API

Giuseppe LoPresti (IT/FIO/FD) 24

StagerStager
Scope

Main daemon for requests processing
Features

Stateless
Multi-services implementation by thread pools

• Allows for independent services execution, even on different nodes
• Enhanced scalability

Maturity
Fairly stable, some bug fixes in the last months
Development still going on to implement missing features
Bugs and RFEs open on it (e.g. memory leak)

Implementation
Main core in C, internal services in C or C++
Usage of the internal DB API

Giuseppe LoPresti (IT/FIO/FD) 25

RMMasterRMMaster & & RMNodeRMNode
Scope

Gather monitoring information from nodes
Submit jobs to the scheduler

Features
Not fully stateless
RMMaster gathers data from RMNode
RMNode runs on the diskservers and polls /proc data

Maturity
Fairly stable, not many bugfixes in the last months
But quite a number of major issues are open on it

Implementation
Fully C
No usage of DB, internal protocol to communicate with stager

Giuseppe LoPresti (IT/FIO/FD) 26

Distributed Logging FacilityDistributed Logging Facility

Scope
Central DB-based logging system

Features
A daemon accepts and stores any log entry from any
Castor subsystem
A PHP-based GUI allows for querying the log

Maturity
Fairly stable, development still going on to improve
performances

Implementation
Fully C, “legacy” DB API

Giuseppe LoPresti (IT/FIO/FD) 27

DLF GUIDLF GUI

Giuseppe LoPresti (IT/FIO/FD) 28

LSF LSF pluginplugin

Scope
Select best candidate resource (file system) among the
set proposed by LSF

Features
Not entirely stateless due to lack of information flow in
LSF API

Maturity
Stable, few changes in the last months
Lack of optimization due to lack of functionality
in the LSF API

• Need for further development in conjunction with LSF people
Implementation

C
Usage of the internal DB API

Giuseppe LoPresti (IT/FIO/FD) 29

gcDaemongcDaemon

Scope
Deletes files marked for garbage collection

Features
Stateless daemon implemented as a stager client

Maturity
Production, no changes since Dec 2004

Implementation
C++
Usage of the client API and the internal API

• proxy “remotized” implementation of the stager

Giuseppe LoPresti (IT/FIO/FD) 30

NameServerNameServer

Scope
Archive the filesystem-like information for the HSM files
Associate tape related information

Features
Stateless daemon, DB backend

Maturity
Production, last change has been a merge with DPM’s
NameServer in Jan 2006, otherwise no changes since
2004

Implementation
Fully C

Giuseppe LoPresti (IT/FIO/FD) 31

Expert daemon (Expert daemon (expertdexpertd))

Scope
Externalize decisions based on policies

Features
Framework for executing policy scripts
Receives policy requests from other components
(stager, MigHunter, TapeErrorHandler)
Supported policy requests types are:

• Filesystem weight
• Replication
• Migrator
• Recaller

Giuseppe LoPresti (IT/FIO/FD) 32

FilesystemFilesystem policypolicy
Scope

Provide an evaluation of each resource (filesystem) from gathered
monitoring information

Features
Single formula implementation
Currently only global, to be converted soon to policy per service class

Maturity
Under development, the current implementation works in production
but has demonstrated not to be stable enough under very heavy load
(Tier0 Data Challenge)

Implementation
Rule in CLIPS logic engine, going to be converted to Perl

Giuseppe LoPresti (IT/FIO/FD) 33

Volume and Drive Queue Mgr (VDQM)Volume and Drive Queue Mgr (VDQM)

Scope
Manage the tape queue and device status

Features
Supports drive dedication (regexp)
Supports request prioritization
Allows for re-use of mounted tapes (useful for CASTOR1)

Maturity
In production since 2000
Scheduling algorithm melts down beyond ~4000 queued requests
New implementation (VDQM 2) ready to be rolled out

Implementation
C
C++ and DB API for the new VDQM 2

Giuseppe LoPresti (IT/FIO/FD) 34

Volume Manager (VMGR)Volume Manager (VMGR)

Scope
Logical Volume Repository. Inventory of all tapes and their
status

Features
Tape pools

• Grouping of tapes for given activities
• Counters for total and free space (calculated using compression

rates)

Maturity
In production since 2000

Implementation
C
Oracle Pro-C

Giuseppe LoPresti (IT/FIO/FD) 35

Castor User Privileges (Castor User Privileges (CupvCupv))

Scope
Manages administrative authorization rights on other
CASTOR modules (nameserver, VMGR)

Features
Flat repository of privileges
Supports regular expressions

Maturity
In production since 2000

Implementation
C
Oracle Pro-C

Giuseppe LoPresti (IT/FIO/FD) 36

Tape mover (Tape mover (rtcpdrtcpd))

Scope
Copy files between tape and disk

Features
Highly multithreaded

• Overlaid network and tape I/O
• Large memory buffers allows for copying multiple files in parallel

Supports a large number of legacy tape formats…
Maturity

In production since 2000
Implementation

C

Giuseppe LoPresti (IT/FIO/FD) 37

MigHunterMigHunter
Scope

Attach migration candidates to streams
Features

Stateless
Callout to expert system for executing migrator policies for fine-
grained control
Can trigger on frequency or volume of data to be migrated

Maturity
In production since 2006
Some known problems with files that have been deleted from the
name server but not cleared in the catalogue

Implementation
C
Usage of internal DB API

Giuseppe LoPresti (IT/FIO/FD) 38

Migrator/recallerMigrator/recaller
Scope

Controls the tape migration/recall
Features

Stateless, multithreaded
Maturity

In production since 2006
Some known problems with files that have been deleted from the
name server but not cleared in the catalogue
Known aging problem resulting in inconsistency in one auxiliary oracle
table that is updated through triggers

• Workaround for oracle problem
• Operational procedure exists for repairing the streams

Implementation
C
Usage of internal DB API

Giuseppe LoPresti (IT/FIO/FD) 39

rtcpclientdrtcpclientd

Scope
Master daemon controlling tape migration/recall

Features
Not fully stateless due to VDQM
Single threaded

Maturity
In production since 2006

Implementation
C
Usage of internal DB API

Giuseppe LoPresti (IT/FIO/FD) 40

OutlineOutline

Detailed view of the architecture

Lifecycle of a GET and a PUT request

Description and status of the components

Main daemons

Diskserver related

Central services

Tape related

Tape migration and recall

Giuseppe LoPresti (IT/FIO/FD) 41

Tape Migration and RecallTape Migration and Recall
“rtcpclientd” is the main component dealing with all interaction to
the CASTOR tape archive

For each running tape recall it forks a ‘recaller’ child process per tape
For each running tape migration it forks a ‘migrator’ child process per
tape

Migration streams are created and populated by the “MigHunter”
component
A TapeErrorHandler process is forked by the rtcpclientd daemon
whenever a recaller or migrator child process exits with error
status.
Detailed description of the functioning and operation of tape
migration and recall in CASTOR2 can be found at:

http://cern.ch/castor/docs/guides/admin/tapeMigrationAndRecall.pdf

Giuseppe LoPresti (IT/FIO/FD) 42

Tape migration/recall componentsTape migration/recall components

rtcpclientd Catalogue MigHunterMigHunterMigHunterMigHunter

recallerrecallerrecallerrecaller

migratormigratormigratormigrator

TapeErrorHandler

rtcpd

vdqmserv
vmgrdaemon

nsdaemon

rtcpdrtcpdrtcpd

rtcpdrtcpdrtcpdrtcpd

fork

Castor1 component
Castor2 component

Giuseppe LoPresti (IT/FIO/FD) 43

Tape recall (1)Tape recall (1)

Tape recalls are triggered when the stager receives a
request for a CASTOR file for which there is no available
disk resident copy

Stager calls the castor name server to retrieve the tape
segment information (VID, fseq, blockid)
Stager inserts the corresponding rows in the Tape and
Segment tables in the catalogue

rtcpclientd regularly (every 30s) checks the catalogue for
tapes to be recalled

Submits the tape request to VDQM (tape queue)
When mover (rtcpd) starts it connects back to the
rtcpclientd, which then forks a recaller process for
servicing the tape recall

Giuseppe LoPresti (IT/FIO/FD) 44

Tape recall (2)Tape recall (2)

The recaller attempts to optimize the use of tape and
disk resources

Tape files are sorted
• Current in fseq order. Ongoing work to find more optimal sorting

taking into account the serpentine track layout on media

Requests for new files on same tape are dynamically
added to running request
Target file system is decided given the current load picture
when the tape file is positioned

Giuseppe LoPresti (IT/FIO/FD) 45

Tape recall flowTape recall flow

stager nsdaemongetsegattr(fileX)

I00234, fseq 45

I00234, PENDING
45, UNPROCESSED

rtcpclientd

tapesToDo ?
I00234

vdqmserv
queue

Giuseppe LoPresti (IT/FIO/FD) 46

Tape recall flowTape recall flow

stager nsdaemon

I00234, MOUNTED
45, UNPROCESSED

rtcpclientd

rtcpd
started

recaller

fork
vdqmserv

Giuseppe LoPresti (IT/FIO/FD) 47

Tape recall flowTape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd

recaller

segmentsForTape ?

fseq=45

rtcpd

vdqmserv

Giuseppe LoPresti (IT/FIO/FD) 48

Tape recall flowTape recall flow

stager nsdaemon

I00234, MOUNTED
45, SELECTED

rtcpclientd

recaller

bestFileSystemForSegment ?

lxfsrk1234:/srv/castor/01

rtcpd

vdqmserv

lxfsrk1234:/srv/castor/01

Giuseppe LoPresti (IT/FIO/FD) 49

Tape migrationTape migration
Similar to tape recall but

Triggered by policy rather than waiting requests
Migration candidates are attached to ‘streams’

A migration ‘Stream’ is a container of migration candidates
Each Stream is associated with 0 or 1 tapes:

• 0 tape: stream not active (e.g. not yet picked up by rtcpclientd, or VMGR
tape pool is full)

• 1 tape: stream is running (tape write request is running) or waiting for tape
mount

A Stream can survive many tapes (but only one at a time)
A TapeCopy can be linked to many Streams

• When a TapeCopy is selected by one of the Streams, its status is
atomically updated preventing it from being selected by another Stream

The MigHunter process is responsible for attaching the migration
candidates to the streams

Migrator policies can be used for fine-grained control over this process

Giuseppe LoPresti (IT/FIO/FD) 50

Example policyExample policy

#!/usr/bin/perl -w
#
Migration policy for distinguishing between small and large files
- if fileSize < 100MB smallfiles
- if fileSize >= 100MB largeFiles
#
use strict;
use diagnostics;
use POSIX;
my $doMigrate = 0;
END {print "$doMigrate\n";}

my ($tapePool,$castorFile,$copynb,$fileid,$fileSize,$mode,$uid,$gid,$atime,$mtime,$ctime,$fileClassId) = @ARGV;

if ((($tapePool =~ “smallfiles") && ($fileSize < 100*1024*1024)) ||
(($tapePool =~ “largeFiles") && ($fileSize >= 100*1024*1024))) {

$doMigrate = 1;
}

exit(EXIT_SUCCESS);

Giuseppe LoPresti (IT/FIO/FD) 51

Comments, questions?Comments, questions?

