GBTX: Tips for users

Pedro Leitão On Behalf of the GBT Project Collaboration 12/06/2014 CERN, Switzerland

Summary

- GBTX: a brief review
 - Mode/encoding
 - Clock domains
 - Configuration methods
 - Power-up sequence
 - Phase Adjustable Output Clocks
 - E-links
 - How to phase align the data of an e-link group
 - Power consumption example
- A simple case-study:
 - GBTX transceiver ("master" GBTX) as clock source for multiple GBTXs transmitters

- Mode/encoding
 - GBT Frame encoding
 - Uplink and downlink
 - 80 data bits using 5 groups
 - 32 FEC bits
 - Widebus mode encoding
 - Uplink
 - 112 data bits using 7 groups
 - No FEC correction
 - Downlink uses GBT Frame encoding
 - 8B/10B encoding
 - Uplink
 - 88 data bits using 5 ½ groups
 - No FEC correction
 - Downlink uses GBT Frame encoding
 - Slow Control Information (IC and EC channels)
 - Only works in transceiver mode and with GBT Frame or Widebus mode
 - Both present in the uplink and downlink
 - 2 bits for the GBTX's Internal Control (IC) channel
 - 2 bits for EC (SCA link)

- Clock Domains
 - Receiver mode:
 - The CDR locks to the backend's clock
 - This clock is used for the e-links transmitter and e-links clock
 - The GBTX SERIALIZER can be turned off to save power

- Clock Domains
 - Receiver mode:
 - The CDR locks to the backend's clock
 - This clock is used for the e-links transmitter and e-links clock
 - The GBTX SERIALIZER can be turned off to save power
 - Transmitter mode:
 - The transmitter uses the REFCLK as a clock source; turning off the GBTX RECEIVER will save power
 - The EPORT-RX uses the SER clock

Clock Domains

- Receiver mode:
 - The CDR locks to the backend's clock
 - This clock is used for the e-links transmitter and e-links clock
 - The GBTX SERIALIZER can be turned off to save power
- Transmitter mode:
 - The transmitter uses the REFCLK as a clock source; turning off the GBTX RECEIVER will save power
 - The EPORT-RX uses the SER clock
- Transceiver mode
 - The CDR locks to the backend clock
 - The SER uses the CDR clock and should only present a phase shift
- The GBTX mode is selected by input pins

- Configuration methods
 - There are two methods to communicate with the GBTX
 - I²C
 - Direct connection using a standard 7-bit addressing I²C (external pull-up resistors to 1.5V required)
 - Can be connected to the SCA or to an external device for initial prototyping
 - The GBTX is an I2C slave; the address 7'b000_0000 is used for general call
 - Internal Control (IC) channel / External Control (EC) channel (SCA LINK)
 - Requires an high-speed serial link with the GBTX in transceiver mode to work
 - The high-speed serial link can be established using I²C or by a set of fused values which are loaded after a power-on reset
 - An IC wrapper will be available for the GBT-FPGA for easy read/write access (RAM based)
 - The two methods are mutually exclusive and are selected by one input pin
 - The GBTX provides a two-wire link for the VTRX programming
 - After the optimal configuration settings have been found, the GBTX can be fused in order to have the self-configuration feature enabled (3.3V power supply required for fuse programming)
 - All GBTX in transceiver ("master" GBTX) mode should be fused so that they are operational on power-up

• Power-up sequence

- Phase Adjustable Output Clocks:
 - 8 programmable clocks
 - 40, 80, 160 and 320 MHz
 - Phase shifts of 50 ps
 - The clock source of the phase shifter's PLL is mode dependent
 - In Transmitter mode, the PLL locks to the REFCLK clock
 - In Receiver mode, the PLL locks to the CDR clock
 - In Transceiver mode, the PLL locks to the CDR clock
 - In receiver/transceiver mode the phase shifter can be used as clock sources for others GBTXs in transmitter mode
 - If phase adjustment of the clocks is not required, the e-link clocks can also provide a stable 40/80/160/320 MHz clock in phase with the source clock. This will help to reduce power

• E-links

Consists of three differential signals

- dCLK (clock driven by GBTX)
- dOUT (data line driven by GBTX)
- dIN (data line from the front-end)

- Data rate input, output and clock rate can be set independently
 - They can run at 40, 80, 160 and 320 (Mb/s and MHz)
- Programmable driving current
- Enable/disable on-chip 100Ω termination
- Due to the e-links serialization/deserialization architecture, data misalignment (between 40 MHz frame and e-links) can occur (e.g. bit-shifts)
- Programmable e-link transmitter (eportTX)
 - The dOUT data is driven in anti-phase with the dCLK
 - The front-end should sample the data in the rising edge; dual data rate is also possible
 - Coarse phase adjustment (bit clock) has to be done either in the front-end or in the backend
- Programmable e-link receivers (eportRX)
 - Modes
 - Static phase-aligner
 - Automatic phase-aligner
 - Trained phase-aligner

- E-links receivers (eportRX)
 - The phase aligner value will depend on the line length
 - The data is delayed in order to have a fine-phase alignment (max. delay is 7/4T_{bit})
 - There are 15 taps available

- E-links receivers (eportRX)
 - Only a fine-phase adjustment (max. 7/4T_{bit}) is available
 - The automatic phase aligner mode is restricted between the [4; 11] tap
 - After a fixed tap, it can vary ± 3 taps
 - Coarse phase adjustment (bit clock) has to be done either in the front-end or in the back-end
- Automatic phase aligner process:

- E-links receivers (eportRX) How to data align a channel?
 - Example:
 - Group at 160 Mbit/s
 - The automatic phase aligner mode is restricted between the [4; 11] tap

- E-links receivers (eportRX) How to data align a channel?
 - Example:
 - Group at 160 Mbit/s
 - The automatic phase aligner mode is restricted between the [4; 11] tap

- E-links receivers (eportRX) How to data align a channel?
 - Example:
 - Group at 160 Mbit/s
 - The automatic phase aligner mode is restricted between the [4; 11] tap

- E-links receivers (eportRX) How to data align a channel?
 - Example:
 - Group at 160 Mbit/s
 - The automatic phase aligner mode is restricted between the [4; 11] tap
 - Coarse phase adjustment (bit clock) is done in the front-end by pipelining the data

- E-links receivers (eportRX) How to data align a channel?
 - Example:
 - Group at 160 Mbit/s
 - The automatic phase aligner mode is restricted between the [4; 11] tap
 - Coarse phase adjustment (bit clock) is done in the front-end by pipelining the data

- E-links receivers (eportRX) How to data align a group?
 - Example:
 - Implement a 4-bit LFSR pseudo-random pattern (overlaps every 16 words)
 - Use the same pattern in the back-end and perform a bitwise XOR with the received frame
 - Keep shifting the front-end output data until you have bitwise XOR = 4'b0000

- E-links receivers (eportRX) How to data align a group? —
 - Example: •
 - Implement a 4-bit LFSR pseudo-random pattern (overlaps every 16 words)
 - Use the same pattern in the back-end and perform a bitwise XOR with the received frame
 - Keep shifting the front-end output data until you have bitwise XOR = 4'b0000 _

F-links receivers (enortRX) - How to data align a group?

In order to use this method (data rate dependent):

- Add a unique pattern which enables you to identify the e-link MSB to your FE and BE
 - e.g,
 - 10'b *if 80 Mb/s*
 - 1000'b *if 160 Mb/s*
 - 1000 0000'b *if 320 Mb/s*
- Add a 4-bit LFSR pattern for group/frame data alignment to your FE and BE
 - e.g

•	4LFSR[1:0]	if 80 Mb/s
---	------------	------------

- 4LFSR[3:0] *if 160 Mb/s*
- {4LFSR[3:0], 4LFSR[3:0]} if 320 Mb/s
- Perform the bitwise XOR using the whole group for group alignment
- The eportTX (e-link transmitter) can use the same method
- You only need to do this once then you can save and reuse the same configuration
 - e.g, use the eportRX trained phase aligner mode
- You can use the SCA to control the I2C channel of your FE

 $D_{n}(3:0) = 4'LFSR$

- Power consumption example
 - Transciever mode
 - GBT Frame
 - All clocks enabled, multiple group data rates, I2C conn

Total Power Consumption: 1.4 (W)

BACKUP SLIDES

• Align eportRX: find the correct position with the 4'LFSR

